109 research outputs found

    Biomimetic spinning of spider silk

    Get PDF

    Shock-free Supersonic Transport

    Get PDF

    Moment-based formulation of Navier–Maxwell slip boundary conditions for lattice Boltzmann simulations of rarefied flows in microchannels

    Get PDF
    We present an implementation of first-order Navier–Maxwell slip boundary conditions for simulating near-continuum rarefied flows in microchannels with the lattice Boltzmann method. Rather than imposing boundary conditions directly on the particle velocity distribution functions, following the existing discrete analogs of the specular and diffuse reflection conditions from continuous kinetic theory, we use a moment-based method to impose the Navier–Maxwell slip boundary conditions that relate the velocity and the strain rate at the boundary. We use these conditions to solve for the unknown distribution functions that propagate into the\ud domain across the boundary. We achieve second-order accuracy by reformulating these conditions for the second set of distribution functions that arise in the derivation of the lattice Boltzmann method by an integration along characteristics. The results are in excellent agreement with asymptotic solutions of the compressible Navier-Stokes equations for microchannel flows in the slip regime. Our moment formalism is also valuable for analysing the existing boundary conditions, and explains the origin of numerical slip in the bounce-back and other common boundary conditions that impose explicit conditions on the higher moments instead of on the local tangential velocity

    A random projection method for sharp phase boundaries in lattice Boltzmann simulations

    Get PDF
    Existing lattice Boltzmann models that have been designed to recover a macroscopic description of immiscible liquids are only able to make predictions that are quantitatively correct when the interface that exists between the fluids is smeared over several nodal points. Attempts to minimise the thickness of this interface generally leads to a phenomenon known as lattice pinning, the precise cause of which is not well understood. This spurious behaviour is remarkably similar to that associated with the numerical simulation of hyperbolic partial differential equations coupled with a stiff source term. Inspired by the seminal work in this field, we derive a lattice Boltzmann implementation of a model equation used to investigate such peculiarities. This implementation is extended to different spacial discretisations in one and two dimensions. We shown that the inclusion of a quasi-random threshold dramatically delays the onset of pinning and facetting

    Optimal tariff period determination

    Get PDF
    We separated the problem into two simpler problems. The first problem is to choose the seasonal tariff periods, and the second problem is to choose the daily tariff periods. During the study group, we mainly considered the first problem, which is simpler because there are just two seasonal tariff periods, peak and off-peak. In the second problem, we can have a maximum of four daily tariff periods

    A locally adaptive time-stepping algorithm for\ud petroleum reservoir simulations

    Get PDF
    An algorithm for locally adapting the step-size for large scale finite volume simulations of multi-phase flow in petroleum reservoirs is suggested which allows for an “all-in-one” implicit calculation of behaviour over a very large time scale. Some numerical results for simple two-phase flow in one space dimension illustrate the promise of the algorithm, which has also been applied to very simple 3D cases. A description of the algorithm is presented here along with early results. Further development of the technique is hoped to facilitate useful scaling properties

    Phase mixing vs. nonlinear advection in drift-kinetic plasma turbulence

    Full text link
    A scaling theory of long-wavelength electrostatic turbulence in a magnetised, weakly collisional plasma (e.g., ITG turbulence) is proposed, with account taken both of the nonlinear advection of the perturbed particle distribution by fluctuating ExB flows and of its phase mixing, which is caused by the streaming of the particles along the mean magnetic field and, in a linear problem, would lead to Landau damping. It is found that it is possible to construct a consistent theory in which very little free energy leaks into high velocity moments of the distribution function, rendering the turbulent cascade in the energetically relevant part of the wave-number space essentially fluid-like. The velocity-space spectra of free energy expressed in terms of Hermite-moment orders are steep power laws and so the free-energy content of the phase space does not diverge at infinitesimal collisionality (while it does for a linear problem); collisional heating due to long-wavelength perturbations vanishes in this limit (also in contrast with the linear problem, in which it occurs at the finite rate equal to the Landau-damping rate). The ability of the free energy to stay in the low velocity moments of the distribution function is facilitated by the "anti-phase-mixing" effect, whose presence in the nonlinear system is due to the stochastic version of the plasma echo (the advecting velocity couples the phase-mixing and anti-phase-mixing perturbations). The partitioning of the wave-number space between the (energetically dominant) region where this is the case and the region where linear phase mixing wins its competition with nonlinear advection is governed by the "critical balance" between linear and nonlinear timescales (which for high Hermite moments splits into two thresholds, one demarcating the wave-number region where phase mixing predominates, the other where plasma echo does).Comment: 45 pages (single-column), 3 figures, replaced with version published in JP
    • …
    corecore