109 research outputs found
Analysis of the optical response of a SARS-CoV-2-directed colorimetric immunosensor
The optical response of different configurations of functionalized gold nanoparticles (f-AuNPs) and SARS-CoV-2 virions is simulated in order to explore the behavior of a colloidal solution containing 105–1013 virions/ml. The analysis herein reported is carried out for three concentration regimes: (i) low (≲108 virions/ml), (ii) intermediate (∼109–1010 virions/ml), and (iii) high (≳1011 virions/ml). Given the high binding effectiveness of f-AuNPs to virions, three different configurations are expected to arise: (i) virions completely surrounded by f-AuNPs, (ii) aggregates (dimers or trimers) of virions linked by f-AuNPs, and (iii) single f-AuNP surrounded by virions. It is demonstrated that 20 nm diameter gold nanoparticles functionalized against all three kinds of SARS-CoV-2 proteins (membrane, envelope, and spike) allow one to reach a limit of detection (LOD) of ∼106 virions/ml, whereas the use of only one kind of f-AuNP entails a ten-fold worsening of the LOD. It is also shown that the close proximity (∼5 nm) of the f-AuNP to the virions assumed throughout this analysis is essential to avoid the hook effect, thereby pointing out the importance of realizing an apt functionalization procedure that keeps thin the dielectric layer (e.g., proteins or aptamers) surrounding the gold nanoparticles
Detection of parathion and patulin by quartz-crystal microbalance functionalized by the photonics immobilization technique
Oriented antibodies are tethered on the gold surface of a quartz crystal microbalance through the
photonics immobilization technique so that limit of detection as low as 50 nM and 140 nM are achieved
for parathion and patulin, respectively. To make these small analytes detectable by the microbalance,
they have been weighed down through a “sandwich protocol” with a second antibody. The specificity
against the parathion has been tested by checking the immunosensor response to a mixture of
compounds similar to parathion, whereas the specificity against the patulin has been tested with a real
sample from apple puree. In both cases, the results are more than satisfactory suggesting interesting
outlook for the proposed device
Biomimetic hydroxyapatite nanocrystals are an active carrier for Salmonella bacteriophages
open access articlePurpose: The use of bacteriophages represents a valid alternative to conventional antimicrobial treatments, overcoming the widespread bacterial antibiotic resistance phenomenon. In this work, we evaluated whether biomimetic hydroxyapatite (HA) nanocrystals are able to enhance some properties of bacteriophages. The final goal of this study was to demonstrate that biomimetic HA nanocrystals can be used for bacteriophage delivery in the context of bacterial infections, and contribute – at the same time – to enhance some of the biological properties of the same bacteriophages such as stability, preservation, antimicrobial activity, and so on.
Materials and methods: Phage isolation and characterization were carried out by using Mitomycin C and following double-layer agar technique. The biomimetic HA water suspension was synthesized in order to obtain nanocrystals with plate-like morphology and nanometric dimensions. The interaction of phages with the HA was investigated by dynamic light scattering and Zeta potential analyses. The cytotoxicity and intracellular killing activities of the phage–HA complex were evaluated in human hepatocellular carcinoma HepG2 cells. The bacterial inhibition capacity of the complex was assessed on chicken minced meat samples infected with Salmonella Rissen.
Results: Our data highlighted that the biomimetic HA nanocrystal–bacteriophage complex was more stable and more effective than phages alone in all tested experimental conditions.
Conclusion: Our results evidenced the important contribution of biomimetic HA nanocrystals: they act as an excellent carrier for bacteriophage delivery and enhance its biological characteristics. This study confirmed the significant role of the mineral HA when it is complexed with biological entities like bacteriophages, as it has been shown for molecules such as lactoferrin
Ultrasensitive antibody-aptamer plasmonic biosensor for malaria biomarker detection in whole blood
Development of plasmonic biosensors combining reliability and ease of use is still a challenge. Gold nanoparticle arrays made by block copolymer micelle nanolithography (BCMN) stand out for their scalability, cost-effectiveness and tunable plasmonic properties, making them ideal substrates for fluorescence enhancement. Here, we describe a plasmon-enhanced fluorescence immunosensor for the specific and ultrasensitive detection of Plasmodium falciparum lactate dehydrogenase (PfLDH)—a malaria marker—in whole blood. Analyte recognition is realized by oriented antibodies immobilized in a close-packed configuration via the photochemical immobilization technique (PIT), with a top bioreceptor of nucleic acid aptamers recognizing a different surface of PfLDH in a sandwich conformation. The combination of BCMN and PIT enabled maximum control over the nanoparticle size and lattice constant as well as the distance of the fluorophore from the sensing surface. The device achieved a limit of detection smaller than 1 pg/mL (<30 fM) with very high specificity without any sample pretreatment. This limit of detection is several orders of magnitude lower than that found in malaria rapid diagnostic tests or even commercial ELISA kits. Thanks to its overall dimensions, ease of use and high-throughput analysis, the device can be used as a substrate in automated multi-well plate readers and improve the efficiency of conventional fluorescence immunoassays
Colorimetric Test for Fast Detection of SARS-CoV-2 in Nasal and Throat Swabs
Mass testing is fundamental to face the pandemic caused by the coronavirus SARS-CoV-2 discovered at the end of 2019. To this aim, it is necessary to establish reliable, fast, and cheap tools to detect viral particles in biological material so to identify the people capable of spreading the infection. We demonstrate that a colorimetric biosensor based on gold nanoparticle (AuNP) interaction induced by SARS-CoV-2 lends itself as an outstanding tool for detecting viral particles in nasal and throat swabs. The extinction spectrum of a colloidal solution of multiple viral-target gold nanoparticles-AuNPs functionalized with antibodies targeting three surface proteins of SARS-CoV-2 (spike, envelope, and membrane)-is red-shifted in few minutes when mixed with a solution containing the viral particle. The optical density of the mixed solution measured at 560 nm was compared to the threshold cycle (Ct) of a real-time PCR (gold standard for detecting the presence of viruses) finding that the colorimetric method is able to detect very low viral load with a detection limit approaching that of the real-time PCR. Since the method is sensitive to the infecting viral particle rather than to its RNA, the achievements reported here open a new perspective not only in the context of the current and possible future pandemics, but also in microbiology, as the biosensor proves itself to be a powerful though simple tool for measuring the viral particle concentration
Optimized Identification of High-Grade Prostate Cancer by Combining Different PSA Molecular Forms and PSA Density in a Deep Learning Model
After skin cancer, prostate cancer (PC) is the most common cancer among men. The gold standard for PC diagnosis is based on the PSA (prostate-specific antigen) test. Based on this preliminary screening, the physician decides whether to proceed with further tests, typically prostate biopsy, to confirm cancer and evaluate its aggressiveness. Nevertheless, the specificity of the PSA test is suboptimal and, as a result, about 75% of men who undergo a prostate biopsy do not have cancer even if they have elevated PSA levels. Overdiagnosis leads to unnecessary overtreatment of prostate cancer with undesirable side effects, such as incontinence, erectile dysfunction, infections, and pain. Here, we used artificial neuronal networks to develop models that can diagnose PC efficiently. The model receives as an input a panel of 4 clinical variables (total PSA, free PSA, p2PSA, and PSA density) plus age. The output of the model is an estimate of the Gleason score of the patient. After training on a dataset of 190 samples and optimization of the variables, the model achieved values of sensitivity as high as 86% and 89% specificity. The efficiency of the method can be improved even further by training the model on larger datasets
The Union is Strength: The Synergic Action of Long Fatty Acids and a Bacteriophage against Xanthomonas campestris Biofilm
Xanthomonas campestris pv. campestris is known as the causative agent of black rot disease,
which attacks mainly crucifers, severely lowering their global productivity. One of the main
virulence factors of this pathogen is its capability to penetrate and form biofilm structures in the
xylem vessels. The discovery of novel approaches to crop disease management is urgent and a
possible treatment could be aimed at the eradication of biofilm, although anti-biofilm approaches
in agricultural microbiology are still rare. Considering the multifactorial nature of biofilm, an
effective approach against Xanthomonas campestris implies the use of a multi-targeted or
combinatorial strategy. In this paper, an anti-biofilm strategy based on the use of fatty acids and the
bacteriophage (Xccφ1)-hydroxyapatite complex was optimized against Xanthomonas campestris
mature biofilm. The synergic action of these elements was demonstrated and the efficient removal
of Xanthomonas campestris mature biofilm was also proven in a flow cell system, making the
proposed approach an effective solution to enhance plant survival in Xanthomonas campestris
infections. Moreover, the molecular mechanisms responsible for the efficacy of the proposed
treatment were explored
Self-formed Micro-Membranes
Oxide heterostructures represent a unique playground for triggering the
emergence of novel electronic states and for implementing new device concepts.
The discovery of 2D conductivity at the interface has been
linking for over a decade two of the major current research fields in Materials
Science: correlated transition-metal-oxide systems and low-dimensional systems.
A full merging of these two fields requires nevertheless the realization of
heterostructures in the form of freestanding membranes. Here
we show a completely new method for obtaining oxide hetero-membranes with
micrometer lateral dimensions. Unlike traditional thin-film-based techniques
developed for semiconductors and recently extended to oxides, the concept we
demonstrate does not rely on any sacrificial layer and is based instead on pure
strain engineering. We monitor through both real-time and post-deposition
analyses, performed at different stages of growth, the strain relaxation
mechanism leading to the spontaneous formation of curved hetero-membranes.
Detailed transmission electron microscopy investigations show that the
membranes are fully epitaxial and that their curvature results in a huge strain
gradient, each of the layers showing a mixed compressive/tensile strain state.
Electronic devices are fabricated by realizing ad hoc circuits for individual
micro-membranes transferred on silicon chips. Our samples exhibit metallic
conductivity and electrostatic field effect similar to 2D-electron systems in
bulk heterostructures. Our results open a new path for adding oxide
functionality into semiconductor electronics, potentially allowing for
ultra-low voltage gating of a superconducting transistors, micromechanical
control of the 2D electron gas mediated by ferroelectricity and
flexoelectricity, and on-chip straintronics.Comment: 8 pages, 4 figure
Glucose Sensing by Time-Resolved Fluorescence of Sol-Gel Immobilized Glucose Oxidase
A monolithic silica gel matrix with entrapped glucose oxidase (GOD) was constructed as a bioactive element in an optical biosensor for glucose determination. Intrinsic fluorescence of free and immobilised GOD was investigated in the visible range in presence of different glucose concentrations by time-resolved spectroscopy with time-correlated single-photon counting detector. A three-exponential model was used for analysing the fluorescence transients. Fractional intensities and mean lifetime were shown to be sensitive to the enzymatic reaction and were used for obtaining calibration curve for glucose concentration determination. The sensing system proposed achieved high resolution (up to 0.17 mM) glucose determination with a detection range from 0.4 mM to 5 mM
- …