16 research outputs found

    Plasma Inflammatory Cytokines Are Elevated in ALS

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease which leads to death in a median time of 2–3 years. Inflammation has been claimed important to the ALS pathogenesis, but its role is still not well-characterized. In the present study, a panel of five cytokines (IL-2, IL-6, IL-10, IFN-gamma, and TNF-alpha)measured in plasma has been investigated in ALS. These biomarkers of inflammation were measured in a population-based cohort of 79 patients with ALS and 79 age- and sex-matched healthy controls using the Bio-Plex technology (Bio-Rad). All the five cytokines were significantly increased in plasma samples of patients compared with controls (p < 0.0001), with IL-6 having the highest median concentration (10.11 pg/ml) in the ALS group. Furthermore, IL-6 was the plasma cytokine with the highest discrimination ability between patients and controls according to the receiver operating characteristic analysis (area under the curve = 0.93). At a cut-off point of 5.71 pg/ml, it was able to classify patients and controls with 91% of sensitivity and 87% of specificity. In the ALS group, plasma IL-6 concentration correlated with demographic (age: rs = 0.25, p = 0.025) and clinical (revised ALS Functional Rating Scale at evaluation: rs = −0.32, p = 0.007; Manual Muscle Testing: rs =−0.33, p=0.004; progression: rs=0.29, p=0.0395) parameters. In line with previous studies, our results confirm that inflammatory cytokines are elevated in ALS, supporting a possible role of inflammation in disease mechanism and progression. However, the precise role of inflammation in ALS needs to be further investigated on larger samples and with more mechanistic studies

    Differences of stabilized organic carbon fractions and microbiological activity along Mediterranean Vertisols and Alfisols profiles

    No full text
    This study examined the chemical and structural properties of humic substances and microbiological activity in order to verify differences in carbon dynamics along soil profiles in two Vertisols (Typic Haploxerert and Xeric Epiaquert) and two Alfisols (Mollic Haploxeralf and Ultic Haploxeralf) developed under Mediterranean climate in Italy. Humification parameters, thermal methods, including differential scanning calorimetry (DSC) and thermogravimetry (TG), together with Fourier transform infrared (FT-IR) and fluorescence spectroscopies were used to characterize humic acids (HA). Microbiological activity of soils was assessed by basal respiration, metabolic quotient (qCO2) and Cmic:Corg ratio. FT-IR spectra and thermal analysis DSC/TG of HA extracted from the upper horizons showed a higher aliphatic character, whereas HA extracted from the lower horizons had a higher content of aromatic structures and polysaccharides. Moreover, the fluorescence index of the HA (HIXflu) showed a higher degree of aromatic polycondensation in the subsoils. The Cmic:Corg ratio was negatively correlated with the HIXflu of HA (Pb0.05), while qCO2 was positively correlated with the labile components of HA (Exo1/(Exo2+Exo3)) (Pb0.05). These results suggest reduced C availability in deep horizons where HA structures resulted in complex and thermally more stable molecules. Following discriminant function analysis all the chemical and microbiological properties with the exception of labile thermal fraction of HA and soil pH largely varied between B and the upper horizons. In deep horizons of both Vertisols and Alfisols the microbial biomass was nutritionally stressed with a low efficiency in C turnover. No correlation was found between specific soil processes, such as argilliturbation or clay illuviation and humic substances properties or soil microbial biomass and activity

    Humic substances along the profile of two Typic Haploxerert.

    No full text
    In Vertisols, organic matter contributes to soil colour by formation of organo-mineral complexes and affects morphological, physico-chemical, biological and biochemical properties. Turbation may affect the chemical and structural composition of the most stabilised fractions of soil organic matter (SOM), i.e., humic substances (HS). The objectives of this study were to: (1) characterise SOM in two Vertisols (V1 and V2) developed under Mediterranean climate in Italy, using some HS characteristics as indicators of SOM turnover in Vertisols, and (2) explore possible differences related to the pedomorphologic conditions of the area under which two soils have formed. SOM evolution along the soil profile was investigated by applying different techniques to chemically extracted HS. Humification parameters, thermal methods, such as Differential Scanning Calorimetry (DSC) and Thermogravimetry (TG) together with isoelectric focusing (IEF) were used. The results showed a significant difference in the chemical characteristics of SOM in the considered Vertisols. A higher amount of total and humified carbon was found in pedon V2. In particular, the results indicated an accumulation of humified compounds in deeper horizons of V2: this effect is particularly significant since both soils were under the same agricultural management and the same climatic conditions, but were different in physiografic position, slope and colour. The higher amount of not humified SOM in the pedon V1 could explain the differences found in the shape and size of soil structure between the two pedons. The different SOM evolution occurring in the two Vertisols apparently influenced the structure and composition of the HS fraction. Thermal analysis and isoelectric focusing data provided evidence of a different level of stabilisation of HS from the two Vertisols. The HS from pedon V2 have a higher molecular weight structure, which would imply a higher level of SOM stabilisation. Conversely, HS in the pedon V1 appeared to be richer in aliphatic and phenolic structures, which may imply the presence of less stabilised HS fractions. These findings agree well with the different water dynamics occurring in the two sites, which confirmed the influence exerted by water on chemical and structural composition of HS and, consequently, their effect in determining Vertisols colour. In conclusion, thermal and isoelectric focusing characterisation of HS appear to shed some light in understanding the structural complexity of Vertisols. The results obtained in the present study, if confirmed on a larger number of Vertisols, suggest the possibility of using HS as indicators of SOM turnover in relation to pedomorphology, use and management of soils
    corecore