77 research outputs found

    Detection of Pelvic Inflammatory Disease: Development of an Automated Case-Finding Algorithm Using Administrative Data

    Get PDF
    ICD-9 codes are conventionally used to identify pelvic inflammatory disease (PID) from administrative data for surveillance purposes. This approach may include non-PID cases. To refine PID case identification among women with ICD-9 codes suggestive of PID, a case-finding algorithm was developed using additional variables. Potential PID cases were identified among women aged 15–44 years at Group Health (GH) and Kaiser Permanente Colorado (KPCO) and verified by medical record review. A classification and regression tree analysis was used to develop the algorithm at GH; validation occurred at KPCO. The positive predictive value (PPV) for using ICD-9 codes alone to identify clinical PID cases was 79%. The algorithm identified PID appropriate treatment and age 15–25 years as predictors. Algorithm sensitivity (GH = 96.4%; KPCO = 90.3%) and PPV (GH = 86.9%; KPCO = 84.5%) were high, but specificity was poor (GH = 45.9%; KPCO = 37.0%). In GH, the algorithm offered a practical alternative to medical record review to further improve PID case identification

    Genetic Variation of the Human Urinary Tract Innate Immune Response and Asymptomatic Bacteriuria in Women

    Get PDF
    BACKGROUND:Although several studies suggest that genetic factors are associated with human UTI susceptibility, the role of DNA variation in regulating early in vivo urine inflammatory responses has not been fully examined. We examined whether candidate gene polymorphisms were associated with altered urine inflammatory profiles in asymptomatic women with or without bacteriuria. METHODOLOGY:We conducted a cross-sectional analysis of asymptomatic bacteriuria (ASB) in 1,261 asymptomatic women ages 18-49 years originally enrolled as participants in a population-based case-control study of recurrent UTI and pyelonephritis. We genotyped polymorphisms in CXCR1, CXCR2, TLR1, TLR2, TLR4, TLR5, and TIRAP in women with and without ASB. We collected urine samples and measured levels of uropathogenic bacteria, neutrophils, and chemokines. PRINCIPAL FINDINGS:Polymorphism TLR2_G2258A, a variant associated with decreased lipopeptide-induced signaling, was associated with increased ASB risk (odds ratio 3.44, 95%CI; 1.65-7.17). Three CXCR1 polymorphisms were associated with ASB caused by gram-positive organisms. ASB was associated with urinary CXCL-8 levels, but not CXCL-5, CXCL-6, or sICAM-1 (P< or =0.0001). Urinary levels of CXCL-8 and CXCL-6, but not ICAM-1, were associated with higher neutrophil levels (P< or =0.0001). In addition, polymorphism CXCR1_G827C was associated with increased CXCL-8 levels in women with ASB (P = 0.004). CONCLUSIONS:TLR2 and CXCR1 polymorphisms were associated with ASB and a CXCR1 variant was associated with urine CXCL-8 levels. These results suggest that genetic factors are associated with early in vivo human bladder immune responses prior to the development of symptomatic UTIs

    Toll-Like Receptor Polymorphisms and Susceptibility to Urinary Tract Infections in Adult Women

    Get PDF
    BACKGROUND:Although behavioral risk factors are strongly associated with urinary tract infection (UTI) risk, the role of genetics in acquiring this disease is poorly understood. METHODOLOGY/PRINCIPAL FINDINGS:To test the hypothesis that polymorphisms in Toll-like receptor (TLR) pathway genes are associated with susceptibility to UTIs, we conducted a population-based case-control study of women ages 18-49 years. We examined DNA variants in 9 TLR pathway genes in 431 recurrent cystitis (rUTI) cases, 400 pyelonephritis cases, and 430 controls with no history of UTIs. In the Caucasian subgroup of 987 women, polymorphism TLR4_A896G was associated with protection from rUTI, but not pyelonephritis, with an odds ratio (OR) of 0.54 and a 95% confidence interval (CI) of 0.31 to 0.96. Polymorphism TLR5_C1174T, which encodes a variant that abrogates flagellin-induced signaling, was associated with an increased risk of rUTI (OR(95%CI): 1.81 (1.00-3.08)), but not pyelonephritis. Polymorphism TLR1_G1805T was associated with protection from pyelonephritis (OR(95%CI): 0.53 (0.29-0.96)). CONCLUSIONS:These results provide the first evidence of associations of TLR5 and TLR1 variants with altered risks of acquiring rUTI and pyelonephritis, respectively. Although these data suggest that TLR polymorphisms are associated with adult susceptibility to UTIs, the statistical significance was modest and will require further study including validation with independent cohorts

    The epidemic of extended-spectrum-beta-lactamase-producing Escherichia coli ST131 is driven by a single highly pathogenic subclone, H30-Rx

    Get PDF
    The Escherichia coli sequence type 131 (ST131) clone is notorious for extraintestinal infections, fluoroquinolone resistance, and extended-spectrum beta-lactamase (ESBL) production, attributable to a CTX-M-15-encoding mobile element. Here, we applied pulsed-field gel electrophoresis (PFGE) and whole-genome sequencing to reconstruct the evolutionary history of the ST131 clone. PFGE-based cluster analyses suggested that both fluoroquinolone resistance and ESBL production had been acquired by multiple ST131 sublineages through independent genetic events. In contrast, the more robust whole-genome-sequence-based phylogenomic analysis revealed that fluoroquinolone resistance was confined almost entirely to a single, rapidly expanding ST131 subclone, designated H30-R. Strikingly, 91% of the CTX-M-15-producing isolates also belonged to a single, well-defined clade nested within H30-R, which was named H30-Rx due to its more extensive resistance. Despite its tight clonal relationship with H30Rx, the CTX-M-15 mobile element was inserted variably in plasmid and chromosomal locations within the H30-Rx genome. Screening of a large collection of recent clinical E. coli isolates both confirmed the global clonal expansion of H30-Rx and revealed its disproportionate association with sepsis (relative risk, 7.5; P < 0.001). Together, these results suggest that the high prevalence of CTX-M-15 production among ST131 isolates is due primarily to the expansion of a single, highly virulent subclone, H30-Rx. IMPORTANCE We applied an advanced genomic approach to study the recent evolutionary history of one of the most important Escherichia coli strains in circulation today. This strain, called sequence type 131 (ST131), causes multidrug-resistant bladder, kidney, and bloodstream infections around the world. The rising prevalence of antibiotic resistance in E. coli is making these infections more difficult to treat and is leading to increased mortality. Past studies suggested that many different ST131 strains gained resistance to extended-spectrum cephalosporins independently. In contrast, our research indicates that most extended-spectrum-cephalosporin-resistant ST131 strains belong to a single highly pathogenic subclone, called H30-Rx. The clonal nature of H30-Rx may provide opportunities for vaccine or transmission prevention-based control strategies, which could gain importance as H30-Rx and other extraintestinal pathogenic E. coli subclones become resistant to our best antibiotics

    The epidemic of extended-spectrum-β-lactamase-producing Escherichia coli ST131 is driven by a single highly pathogenic subclone, H30-Rx

    Get PDF
    The Escherichia coli sequence type 131 (ST131) clone is notorious for extraintestinal infections, fluoroquinolone resistance, and extended-spectrum beta-lactamase (ESBL) production, attributable to a CTX-M-15-encoding mobile element. Here, we applied pulsed-field gel electrophoresis (PFGE) and whole-genome sequencing to reconstruct the evolutionary history of the ST131 clone. PFGE-based cluster analyses suggested that both fluoroquinolone resistance and ESBL production had been acquired by multiple ST131 sublineages through independent genetic events. In contrast, the more robust whole-genome-sequence-based phylogenomic analysis revealed that fluoroquinolone resistance was confined almost entirely to a single, rapidly expanding ST131 subclone, designated H30-R. Strikingly, 91% of the CTX-M-15-producing isolates also belonged to a single, well-defined clade nested within H30-R, which was namedH30-Rx due to its more extensive resistance. Despite its tight clonal relationship with H30Rx, the CTX-M-15 mobile element was inserted variably in plasmid and chromosomal locations within the H30-Rx genome. Screening of a large collection of recent clinical E. coli isolates both confirmed the global clonal expansion of H30-Rx and revealed its disproportionate association with sepsis (relative risk, 7.5; P \u3c 0.001). Together, these results suggest that the high prevalence of CTX-M-15 production among ST131 isolates is due primarily to the expansion of a single, highly virulent subclone, H30-Rx
    corecore