32 research outputs found

    Consonant identification using temporal fine structure and recovered envelope cues

    Get PDF
    The contribution of recovered envelopes (RENVs) to the utilization of temporal-fine structure (TFS) speech cues was examined in normal-hearing listeners. Consonant identification experiments used speech stimuli processed to present TFS or RENV cues. Experiment 1 examined the effects of exposure and presentation order using 16-band TFS speech and 40-band RENV speech recovered from 16-band TFS speech. Prior exposure to TFS speech aided in the reception of RENV speech. Performance on the two conditions was similar (∼50%-correct) for experienced listeners as was the pattern of consonant confusions. Experiment 2 examined the effect of varying the number of RENV bands recovered from 16-band TFS speech. Mean identification scores decreased as the number of RENV bands decreased from 40 to 8 and were only slightly above chance levels for 16 and 8 bands. Experiment 3 examined the effect of varying the number of bands in the TFS speech from which 40-band RENV speech was constructed. Performance fell from 85%- to 31%-correct as the number of TFS bands increased from 1 to 32. Overall, these results suggest that the interpretation of previous studies that have used TFS speech may have been confounded with the presence of RENVs.National Institutes of Health (U.S.) (Grant R01 DC00117)National Institutes of Health (U.S.) (Grant R43 DC013006

    Two-microphone spatial filtering provides speech reception benefits for cochlear implant users in difficult acoustic environments

    Get PDF
    This article introduces and provides an assessment of a spatial-filtering algorithm based on two closely-spaced (∼1 cm) microphones in a behind-the-ear shell. The evaluated spatial-filtering algorithm used fast (∼10 ms) temporal-spectral analysis to determine the location of incoming sounds and to enhance sounds arriving from straight ahead of the listener. Speech reception thresholds (SRTs) were measured for eight cochlear implant (CI) users using consonant and vowel materials under three processing conditions: An omni-directional response, a dipole-directional response, and the spatial-filtering algorithm. The background noise condition used three simultaneous time-reversed speech signals as interferers located at 90°, 180°, and 270°. Results indicated that the spatial-filtering algorithm can provide speech reception benefits of 5.8 to 10.7 dB SRT compared to an omni-directional response in a reverberant room with multiple noise sources. Given the observed SRT benefits, coupled with an efficient design, the proposed algorithm is promising as a CI noise-reduction solution.National Institutes of Health (U.S.) (Grant R01 DC 000117)National Institutes of Health (U.S.) (Grant R01 DC DC7152)National Institutes of Health (U.S.) (Grant 2R44DC010524-02

    Auditory and tactile gap discrimination by observers with normal and impaired hearing

    Get PDF
    Temporal processing ability for the senses of hearing and touch was examined through the measurement of gap-duration discrimination thresholds (GDDTs) employing the same low-frequency sinusoidal stimuli in both modalities. GDDTs were measured in three groups of observers (normal-hearing, hearing-impaired, and normal-hearing with simulated hearing loss) covering an age range of 21–69 yr. GDDTs for a baseline gap of 6 ms were measured for four different combinations of 100-ms leading and trailing markers (250–250, 250–400, 400–250, and 400–400 Hz). Auditory measurements were obtained for monaural presentation over headphones and tactile measurements were obtained using sinusoidal vibrations presented to the left middle finger. The auditory GDDTs of the hearing-impaired listeners, which were larger than those of the normal-hearing observers, were well-reproduced in the listeners with simulated loss. The magnitude of the GDDT was generally independent of modality and showed effects of age in both modalities. The use of different-frequency compared to same-frequency markers led to a greater deterioration in auditory GDDTs compared to tactile GDDTs and may reflect differences in bandwidth properties between the two sensory systems.National Institute on Deafness and Other Communication Disorders (U.S.) (Grant R01 DC000117

    Sensory Communication

    Get PDF
    Contains table of contents for Section 2, an introduction, reports on nine research projects and a list of publications.National Institutes of Health Grant 5 R01 DC00117National Institutes of Health Grant 2 R01 DC00270National Institutes of Health Grant 1 P01 DC00361National Institutes of Health Grant 2 R01 DC00100National Institutes of Health Grant FV00428National Institutes of Health Grant 5 R01 DC00126U.S. Air Force - Office of Scientific Research Grant AFOSR 90-200U.S. Navy - Office of Naval Research Grant N00014-90-J-1935National Institutes of Health Grant 5 R29 DC0062

    Sensory Communication

    Get PDF
    Contains table of contents for Section 2, an introduction, reports on ten research projects and a list of publications.National Institutes of Health Grant 5 R01 DC00117National Institutes of Health Grant 5 R01 DC00270National Institutes of Health Grant 5 P01 DC00361National Institutes of Health Grant 2 R01 DC00100National Institutes of Health Grant 7 R29 DC00428National Institutes of Health Grant 2 R01 DC00126U.S. Air Force - Office of Scientific Research Grant AFOSR 90-0200U.S. Navy - Office of Naval Research Grant N00014-90-J-1935National Institutes of Health Grant 5 R29 DC00625U.S. Navy - Office of Naval Research Grant N00014-91-J-145

    Communications Biophysics

    Get PDF
    Contains research objectives and reports on six research projects split into three sections.National Institutes of Health (Grant 5 P01 NS13126-07)National Institutes of Health (Training Grant 5 T32 NS07047-05)National Institutes of Health (Training Grant 2 T32 NS07047-06)National Science Foundation (Grant BNS 77-16861)National Institutes of Health (Grant 5 R01 NS1284606)National Institutes of Health (Grant 5 T32 NS07099)National Science Foundation (Grant BNS77-21751)National Institutes of Health (Grant 5 R01 NS14092-04)Gallaudet College SubcontractKarmazin Foundation through the Council for the Arts at M.I.T.National Institutes of Health (Grant 1 R01 NS1691701A1)National Institutes of Health (Grant 5 R01 NS11080-06)National Institutes of Health (Grant GM-21189

    Communications Biophysics

    Get PDF
    Contains reports on seven research projects split into three sections, with research objective for the final section.National Institutes of Health (Grant 2 PO1 NS 13126)National Institutes of Health (Grant 5 RO1 NS 18682)National Institutes of Health (Grant 1 RO1 NS 20322)National Institutes of Health (Grant 1 RO1 NS 20269)National Institutes of Health (Grant 5 T32 NS 07047)Symbion, Inc.National Institutes of Health (Grant 5 RO1 NS10916)National Institutes of Health (Grant 1 RO1 NS16917)National Science Foundation (Grant BNS83-19874)National Science Foundation (Grant BNS83-19887)National Institutes of Health (Grant 5 RO1 NS12846)National Institutes of Health (Grant 5 RO1 NS21322)National Institutes of Health (Grant 5 RO1 NS 11080

    Sensory Communication

    Get PDF
    Contains table of contents on Section 2, an introduction, reports on eleven research projects and a list of publications.National Institutes of Health Grant 5 R01 DC00117National Institutes of Health Grant 5 R01 DC00270National Institutes of Health Contract 2 P01 DC00361National Institutes of Health Grant 5 R01 DC00100National Institutes of Health Contract 7 R29 DC00428National Institutes of Health Grant 2 R01 DC00126U.S. Air Force - Office of Scientific Research Grant AFOSR 90-0200U.S. Navy - Office of Naval Research Grant N00014-90-J-1935National Institutes of Health Grant 5 R29 DC00625U.S. Navy - Office of Naval Research Grant N00014-91-J-1454U.S. Navy - Office of Naval Research Grant N00014-92-J-181

    Communications Biophysics

    Get PDF
    Contains research objectives and reports on eight research projects split into three sections.National Institutes of Health (Grant 2 PO1 NS13126)National Institutes of Health (Grant 5 RO1 NS18682)National Institutes of Health (Grant 5 RO1 NS20322)National Institutes of Health (Grant 1 RO1 NS 20269)National Institutes of Health (Grant 5 T32 NS 07047)Symbion, Inc.National Institutes of Health (Grant 5 R01 NS10916)National Institutes of Health (Grant 1 RO NS 16917)National Science Foundation (Grant BNS83-19874)National Science Foundation (Grant BNS83-19887)National Institutes of Health (Grant 5 RO1 NS12846)National Institutes of Health (Grant 1 RO1 NS21322-01)National Institutes of Health (Grant 5 T32-NS07099-07)National Institutes of Health (Grant 1 RO1 NS14092-06)National Science Foundation (Grant BNS77-21751)National Institutes of Health (Grant 5 RO1 NS11080

    Communications Biophysics

    Get PDF
    Contains reports on seven research projects split into three sections.National Institutes of Health (Grant 5 PO1 NS13126)National Institutes of Health (Grant 1 RO1 NS18682)National Institutes of Health (Training Grant 5 T32 NS07047)National Science Foundation (Grant BNS77-16861)National Institutes of Health (Grant 1 F33 NS07202-01)National Institutes of Health (Grant 5 RO1 NS10916)National Institutes of Health (Grant 5 RO1 NS12846)National Institutes of Health (Grant 1 RO1 NS16917)National Institutes of Health (Grant 1 RO1 NS14092-05)National Science Foundation (Grant BNS 77 21751)National Institutes of Health (Grant 5 R01 NS11080)National Institutes of Health (Grant GM-21189
    corecore