19,376 research outputs found

    The Unhiggs

    Full text link
    We examine a scenario where the Higgs is part of an approximate conformal field theory, and has a scaling dimension greater than one. Such an unparticle Higgs (or Unhiggs) can still break electroweak symmetry and unitarize WW scattering, but its gauge couplings are suppressed. An Unhiggs model has a reduced sensitivity of the weak scale to the cutoff, and can thus provide a solution to the little hierarchy problem.Comment: 21 pages, 9 figures; v2: further discussion, references added, version published in JHE

    Raman-scattering study of the phonon dispersion in twisted bi-layer graphene

    Full text link
    Bi-layer graphene with a twist angle \theta\ between the layers generates a superlattice structure known as Moir\'{e} pattern. This superlattice provides a \theta-dependent q wavevector that activates phonons in the interior of the Brillouin zone. Here we show that this superlattice-induced Raman scattering can be used to probe the phonon dispersion in twisted bi-layer graphene (tBLG). The effect reported here is different from the broadly studied double-resonance in graphene-related materials in many aspects, and despite the absence of stacking order in tBLG, layer breathing vibrations (namely ZO' phonons) are observed.Comment: 18 pages, 4 figures, research articl

    On the generalized Feng-Rao numbers of numerical semigroups generated by intervals

    Full text link
    We give some general results concerning the computation of the generalized Feng-Rao numbers of numerical semigroups. In the case of a numerical semigroup generated by an interval, a formula for the rthr^{th} Feng-Rao number is obtained.Comment: 23 pages, 6 figure

    Topological Quantum Error Correction with Optimal Encoding Rate

    Full text link
    We prove the existence of topological quantum error correcting codes with encoding rates k/nk/n asymptotically approaching the maximum possible value. Explicit constructions of these topological codes are presented using surfaces of arbitrary genus. We find a class of regular toric codes that are optimal. For physical implementations, we present planar topological codes.Comment: REVTEX4 file, 5 figure

    Numerical semigroups problem list

    Full text link
    We propose a list of open problems in numerical semigroups.Comment: To appear in the CIM Bulletin, number 33. (http://www.cim.pt/) 13 page

    Quantum control on entangled bipartite qubits

    Full text link
    Ising interaction between qubits could produce distortion in entangled pairs generated for engineering purposes (as in quantum computation) in presence of parasite magnetic fields, destroying or altering the expected behavior of process in which is projected to be used. Quantum control could be used to correct that situation in several ways. Sometimes the user should be make some measurement upon the system to decide which is the best control scheme; other posibility is try to reconstruct the system using similar procedures without perturbate it. In the complete pictures both schemes are present. We will work first with pure systems studying advantages of different procedures. After, we will extend these operations when time of distortion is uncertain, generating a mixed state, which needs to be corrected by suposing the most probably time of distortion.Comment: 10 pages, 5 figure

    Homological Error Correction: Classical and Quantum Codes

    Get PDF
    We prove several theorems characterizing the existence of homological error correction codes both classically and quantumly. Not every classical code is homological, but we find a family of classical homological codes saturating the Hamming bound. In the quantum case, we show that for non-orientable surfaces it is impossible to construct homological codes based on qudits of dimension D>2D>2, while for orientable surfaces with boundaries it is possible to construct them for arbitrary dimension DD. We give a method to obtain planar homological codes based on the construction of quantum codes on compact surfaces without boundaries. We show how the original Shor's 9-qubit code can be visualized as a homological quantum code. We study the problem of constructing quantum codes with optimal encoding rate. In the particular case of toric codes we construct an optimal family and give an explicit proof of its optimality. For homological quantum codes on surfaces of arbitrary genus we also construct a family of codes asymptotically attaining the maximum possible encoding rate. We provide the tools of homology group theory for graphs embedded on surfaces in a self-contained manner.Comment: Revtex4 fil
    • 

    corecore