14 research outputs found

    Influence of indoor hygrothermal conditions on human quality of life in social housing

    Get PDF
    Background: Modern societies spend most of their time indoors, namely at home, and the indoor environment quality turns out to be a crucial factor to health, quality of life and well-being of the residents. The present study aims to understand how indoor environment relates with quality of life and how improving housing conditions impacts on individuals’ health. Design and Methods: This study case will rely on the following assessments in both rehabilitated and non-rehabilitated social housing: i) field measurements, in social dwellings (namely temperature, relative humidity, carbon dioxide concentration, air velocity, air change rate, level of mould spores and energy consumption); ii) residents’ questionnaires on social, demogaphic, behavioural, health characteristics and quality of life. Also, iii) qualitative interviews performed with social housing residents from the rehabilitated houses, addressing the self-perception of living conditions and their influence in health status and quality of life. All the collected information will be combined and analysed in order to achieve the main objective. Expected impact: It is expected to define a Predicted Human Life Quality (PHLQ) index, that combines physical parameters describing the indoor environment measured through engineering techniques with residents’ and neighbourhood quality of life characteristics assessed by health questionnaires. Improvement in social housing should be related with better health indicators and the new index might be an important tool contributing to enhance quality of life of the residents

    Building pathology

    No full text

    Wetting and Drying of External Surfaces with ETICS Systems

    No full text

    Degradation Control of Walls with Rising Damp Problems

    No full text

    Advanced Manufacturing in Civil Engineering

    Get PDF
    The main goal of this work is the analysis of potential energy and green benefits of 3D printing on building construction. Current literature reports a considerable number of benefits for 3D printing, namely, reduction of material use, lower operational costs and time-saving. The authors also mention design freedom, higher efficiency, productivity and quality. This work presents the latest developments in 3D printing in civil engineering, namely, a review of the last 3D printing projects and the limitations of construction 3D printing with a focus on large-scale applications, technology costs, mix development and optimisation and thermal behaviour
    corecore