157 research outputs found

    Curcuma longa and Boswellia serrata Extracts Modulate Different and Complementary Pathways on Human Chondrocytes In Vitro: Deciphering of a Transcriptomic Study

    Full text link
    peer reviewedObjectives:Curcuma longa (CL) and Boswellia serrata (BS) extracts are used to relieve osteoarthritis symptoms. The aim of this in vitro study was to investigate their mechanisms of action at therapeutic plasmatic concentrations on primary human osteoarthritic (OA) chondrocytes.Methods: BS (10–50 μg/ml) and CL (0.4–2 μg/ml corresponding to 1–5 µM of curcumin) were evaluated separately or in combination on primary chondrocytes isolated from 17 OA patients and cultured in alginate beads. Ten patients were used for RNA-sequencing analysis. Proteomic confirmation was performed either by immunoassays in the culture supernatant or by flow cytometry for cell surface markers after 72 h of treatment.Results: Significant gene expression modifications were already observed after 6 h of treatment at the highest dose of CL (2 μg/ml) while BS was significantly effective only after 24 h of treatment irrespective of the concentration tested. The most over-expressed genes by CL were anti-oxidative, detoxifying, and cytoprotective genes involved in the Nrf2 pathway. Down-regulated genes were principally pro-inflammatory cytokines and chemokines. Inversely, BS anti-oxidant/detoxifying activities were related to the activation of Nrf1 and PPARα pathways. BS anti-inflammatory effects were associated with the increase in GDF15, decrease in cholesterol cell intake and fatty acid metabolism-involved genes, and down-regulation of Toll-like receptors (TLRs) activation. Similar to CL, BS down-regulated ADAMTS1, 5, and MMP3, 13 genes expression. The combination of both CL and BS was significantly more effective than CL or BS alone on many genes such as IL-6, CCL2, ADAMTS1, and 5.Conclusion: BS and CL have anti-oxidative, anti-inflammatory, and anti-catabolic activities, suggesting a protective effect of these extracts on cartilage. Even if they share some mechanism of action, the two extracts act mainly on distinct pathways, and with different time courses, justifying their association to treat osteoarthritis

    The porin and the permeating antibiotic: A selective diffusion barrier in gram-negative bacteria

    Get PDF
    Gram-negative bacteria are responsible for a large proportion of antibiotic resistant bacterial diseases. These bacteria have a complex cell envelope that comprises an outer membrane and an inner membrane that delimit the periplasm. The outer membrane contains various protein channels, called porins, which are involved in the influx of various compounds, including several classes of antibiotics. Bacterial adaptation to reduce influx through porins is an increasing problem worldwide that contributes, together with efflux systems, to the emergence and dissemination of antibiotic resistance. An exciting challenge is to decipher the genetic and molecular basis of membrane impermeability as a bacterial resistance mechanism. This Review outlines the bacterial response towards antibiotic stress on altered membrane permeability and discusses recent advances in molecular approaches that are improving our knowledge of the physico-chemical parameters that govern the translocation of antibiotics through porin channel

    Profil épidémiologique des troubles du rythme et de conduction dans un service d'Urgences Générales (évaluation des prises en charge médicales)

    No full text
    LILLE2-BU Santé-Recherche (593502101) / SudocPARIS-BIUM (751062103) / SudocSudocFranceF

    Advances in the genetics of thermophilic lactic acid bacteria.

    No full text
    Molecular genetics of thermophilic lactic acid bacteria has advanced in several directions: exploitation of the milk proteins and sugars; primary and secondary metabolism; stress response; and molecular ecology of bacteria and their phages. These have singularly contributed to open new avenues of scientific interest in the field: comparative phage genomics; horizontal gene transfer events in bacterial or phage populations; and genetics of external polysaccharide production
    • …
    corecore