110 research outputs found

    Selective Attention to Visual Stimuli Using Auditory Distractors Is Altered in Alpha-9 Nicotinic Receptor Subunit Knock-Out Mice

    Get PDF
    During selective attention, subjects voluntarily focus their cognitive resources on a specific stimulus while ignoring others. Top-downfiltering of peripheral sensory responses by higher structures of the brain has been proposed as one of the mechanisms responsible forselective attention. A prerequisite to accomplish top-down modulation of the activity of peripheral structures is the presence of corticofugalpathways. The mammalian auditory efferent system is a unique neural network that originates in the auditory cortex and projectstothe cochlear receptorthroughthe olivocochlear bundle, and it has been proposedtofunction as atop-downfilter of peripheral auditoryresponses during attention to cross-modal stimuli. However, to date, there is no conclusive evidence of the involvement of olivocochlearneurons in selective attention paradigms. Here, wetrained wild-type and-9 nicotinic receptor subunit knock-out (KO) mice, which lackcholinergic transmission between medial olivocochlear neurons and outer hair cells, in a two-choice visual discrimination task andstudied the behavioral consequences of adding different types of auditory distractors. In addition, we evaluated the effects of contralateralnoise on auditory nerve responses as a measure of the individual strength of the olivocochlear reflex. We demonstrate that KO micehave a reduced olivocochlear reflex strength and perform poorly in a visual selective attention paradigm. These results confirm that anintact medial olivocochlear transmission aids in ignoring auditory distraction during selective attention to visual stimuli.Fil: Terreros, Gonzalo. Universidad de Santiago de Chile; ChileFil: Jorratt, Pascal. Universidad de Santiago de Chile; ChileFil: Aedo, Cristian. Universidad de Santiago de Chile; Chile. Universidad de Chile; ChileFil: Elgoyhen, Ana Belen. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; Argentina. Universidad de Buenos Aires. Facultad de Medicina; ArgentinaFil: Delano, Paul H.. Universidad de Santiago de Chile; Chile. Universidad de Chile; Chil

    A Glass Spherule of Questionable Impact Origin from the Apollo 15 Landing Site: Unique Target Mare Basalt

    Get PDF
    A 6 mm-diameter dark spherule, 15434,28, from the regolith on the Apennine Front at the Apollo 15 landing site has a homogeneous glass interior with a 200 microns-thick rind of devitrified or crystallized melt. The rind contains abundant small fragments of Apollo 15 olivine-normative mare basalt and rare volcanic Apollo 15 green glass. The glass interior of the spherule has the chemical composition, including a high FeO content and high CaO/Al2O3, of a mare basalt. Whereas the major element and Sc, Ni, and Co abundances are similar to those of low-Ti mare basalts, the incompatible elements and Sr abundances are similar to those of high-Ti mare basaits. The relative abundance patterns of the incompatible trace elements are distinct from any other lunar mare basalts or KREEP; among these distinctions are a much steeper slope of the heavy rare earth elements. The 15434,28 glass has abundances of the volatile element Zn consistent with both impact glasses and crystalline mare basalts, but much lower than in glasses of mare volcanic origin. The glass contains siderophile elements such as Ir in abundances only slightly higher than accepted lunar indigenous levels, and some, such as Au, are just below such upper limits. The age of the glass, determined by the Ar-40/Ar-39 laser incremental heating technique, is 1647 +/- 11 Ma (2 sigma); it is expressed as an age spectrum of seventeen steps over 96% of the Ar-38 released, unusual for an impact glass. Trapped argon is negligible. The undamaged nature of the sphere demonstrates that it must have spent most of its life buried in regolith; Ar-38 cosmic ray exposure data suggest that it was buried at less than 2m but more than a few centimeters if a single depth is appropriate. That the spherule solidified to a glass is surprising; for such a mare composition, cooling at about 50 C/s is required to avoid crystallization, and barely attainable in such a large spherule. The low volatile abundances, slightly high siderophile abundances, and the young age are perhaps all most consistent with an impact origin, but nonetheless not absolutely definitive

    Cingulate Cortex Atrophy Is Associated With Hearing Loss in Presbycusis With Cochlear Amplifier Dysfunction

    Get PDF
    Age-related hearing loss is associated with cognitive decline and has been proposed as a risk factor for dementia. However, the mechanisms that relate hearing loss to cognitive decline remain elusive. Here, we propose that the impairment of the cochlear amplifier mechanism is associated with structural brain changes and cognitive impairment. Ninety-six subjects aged over 65 years old (63 female and 33 male) were evaluated using brain magnetic resonance imaging, neuropsychological and audiological assessments, including distortion product otoacoustic emissions as a measure of the cochlear amplifier function. All the analyses were adjusted by age, gender and education. The group with cochlear amplifier dysfunction showed greater brain atrophy in the cingulate cortex and in the parahippocampus. In addition, the atrophy of the cingulate cortex was associated with cognitive impairment in episodic and working memories and in language and visuoconstructive abilities. We conclude that the neural abnormalities observed in presbycusis subjects with cochlear amplifier dysfunction extend beyond core auditory network and are associated with cognitive decline in multiple domains. These results suggest that a cochlear amplifier dysfunction in presbycusis is an important mechanism relating hearing impairments to brain atrophy in the extended network of effortful hearing

    Preventing presbycusis in mice with enhanced medial olivocochlear feedback

    Get PDF
    "Growing old" is the most common cause of hearing loss. Agerelated hearing loss (ARHL) (presbycusis) first affects the ability to understand speech in background noise, even when auditory thresholds in quiet are normal. It has been suggested that cochlear denervation ("synaptopathy") is an early contributor to agerelated auditory decline. In the present work, we characterized age-related cochlear synaptic degeneration and hair cell loss in mice with enhanced α9α10 cholinergic nicotinic receptors gating kinetics ("gain of function" nAChRs). These mediate inhibitory olivocochlear feedback through the activation of associated calciumgated potassium channels. Cochlear function was assessed via distortion product otoacoustic emissions and auditory brainstem responses. Cochlear structure was characterized in immunolabeled organ of Corti whole mounts using confocal microscopy to quantify hair cells, auditory neurons, presynaptic ribbons, and postsynaptic glutamate receptors. Aged wild-type mice had elevated acoustic thresholds and synaptic loss. Afferent synapses were lost from inner hair cells throughout the aged cochlea, together with some loss of outer hair cells. In contrast, cochlear structure and function were preserved in aged mice with gain-of-function nAChRs that provide enhanced olivocochlear inhibition, suggesting that efferent feedback is important for long-term maintenance of inner ear function. Our work provides evidence that olivocochlear-mediated resistance to presbycusis-ARHL occurs via the α9α10 nAChR complexes on outer hair cells. Thus, enhancement of the medial olivocochlear system could be a viable strategy to prevent age-related hearing loss.Fil: Boero, Luis Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; Argentina. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Farmacología; ArgentinaFil: Castagna, Valeria Carolina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; Argentina. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Farmacología; ArgentinaFil: Terreros, Gonzalo. Universidad de Chile; ChileFil: Moglie, Marcelo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; ArgentinaFil: Silva, Sebastián. Universidad de Chile; ChileFil: Maass, Juan C.. Universidad de Chile; ChileFil: Fuchs, Paul A.. University Johns Hopkins; Estados UnidosFil: Delano, Paul H.. Universidad de Chile; ChileFil: Elgoyhen, Ana Belen. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; Argentina. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Farmacología; ArgentinaFil: Gomez Casati, Maria Eugenia. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Farmacología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; Argentin

    Structure and reactivity of Trypanosoma brucei pteridine reductase: inhibition by the archetypal antifolate methotrexate

    Get PDF
    The protozoan Trypanosoma brucei has a functional pteridine reductase (TbPTR1), an NADPH-dependent short-chain reductase that participates in the salvage of pterins, which are essential for parasite growth. PTR1 displays broad-spectrum activity with pterins and folates, provides a metabolic bypass for inhibition of the trypanosomatid dihydrofolate reductase and therefore compromises the use of antifolates for treatment of trypanosomiasis. Catalytic properties of recombinant TbPTR1 and inhibition by the archetypal antifolate methotrexate have been characterized and the crystal structure of the ternary complex with cofactor NADP(+) and the inhibitor determined at 2.2 Å resolution. This enzyme shares 50% amino acid sequence identity with Leishmania major PTR1 (LmPTR1) and comparisons show that the architecture of the cofactor binding site, and the catalytic centre are highly conserved, as are most interactions with the inhibitor. However, specific amino acid differences, in particular the placement of Trp221 at the side of the active site, and adjustment of the β6-α6 loop and α6 helix at one side of the substrate-binding cleft significantly reduce the size of the substrate binding site of TbPTR1 and alter the chemical properties compared with LmPTR1. A reactive Cys168, within the active site cleft, in conjunction with the C-terminus carboxyl group and His267 of a partner subunit forms a triad similar to the catalytic component of cysteine proteases. TbPTR1 therefore offers novel structural features to exploit in the search for inhibitors of therapeutic value against African trypanosomiasis

    Solution structure of the inner DysF domain of myoferlin and implications for limb girdle muscular dystrophy type 2b

    Get PDF
    Mutations in the protein dysferlin, a member of the ferlin family, lead to limb girdle muscular dystrophy type 2B and Myoshi myopathy. The ferlins are large proteins characterised by multiple C2 domains and a single C-terminal membrane-spanning helix. However, there is sequence conservation in some of the ferlin family in regions outside the C2 domains. In one annotation of the domain structure of these proteins, an unusual internal duplication event has been noted where a putative domain is inserted in between the N- and C-terminal parts of a homologous domain. This domain is known as the DysF domain. Here, we present the solution structure of the inner DysF domain of the dysferlin paralogue myoferlin, which has a unique fold held together by stacking of arginine and tryptophans, mutations that lead to clinical disease in dysferlin

    MyD88-dependent expansion of an immature GR-1+CD11b+ population induces T cell suppression and Th2 polarization in sepsis

    Get PDF
    Polymicrobial sepsis alters the adaptive immune response and induces T cell suppression and Th2 immune polarization. We identify a GR-1+CD11b+ population whose numbers dramatically increase and remain elevated in the spleen, lymph nodes, and bone marrow during polymicrobial sepsis. Phenotypically, these cells are heterogeneous, immature, predominantly myeloid progenitors that express interleukin 10 and several other cytokines and chemokines. Splenic GR-1+ cells effectively suppress antigen-specific CD8+ T cell interferon (IFN) γ production but only modestly suppress antigen-specific and nonspecific CD4+ T cell proliferation. GR-1+ cell depletion in vivo prevents both the sepsis-induced augmentation of Th2 cell–dependent and depression of Th1 cell–dependent antibody production. Signaling through MyD88, but not Toll-like receptor 4, TIR domain–containing adaptor-inducing IFN-β, or the IFN-α/β receptor, is required for complete GR-1+CD11b+ expansion. GR-1+CD11b+ cells contribute to sepsis-induced T cell suppression and preferential Th2 polarization

    Structural insight into repair of alkylated DNA by a new superfamily of DNA glycosylases comprising HEAT-like repeats

    Get PDF
    3-methyladenine DNA glycosylases initiate repair of cytotoxic and promutagenic alkylated bases in DNA. We demonstrate by comparative modelling that Bacillus cereus AlkD belongs to a new, fifth, structural superfamily of DNA glycosylases with an alpha–alpha superhelix fold comprising six HEAT-like repeats. The structure reveals a wide, positively charged groove, including a putative base recognition pocket. This groove appears to be suitable for the accommodation of double-stranded DNA with a flipped-out alkylated base. Site-specific mutagenesis within the recognition pocket identified several residues essential for enzyme activity. The results suggest that the aromatic side chain of a tryptophan residue recognizes electron-deficient alkylated bases through stacking interactions, while an interacting aspartate–arginine pair is essential for removal of the damaged base. A structural model of AlkD bound to DNA with a flipped-out purine moiety gives insight into the catalytic machinery for this new class of DNA glycosylases

    The neural bases of tinnitus : Lessons from deafness and cochlear implants

    Get PDF
    Subjective tinnitus is the conscious perception of sound in the absence of any acoustic source. The literature suggests various tinnitus mechanisms, most of which invoke changes in spontaneous firing rates of central auditory neurons resulting from modification of neural gain. Here, we present an alternative model based on evidence that tinnitus is: (i) rare in people who are congenitally deaf, (ii) common in people with acquired deafness, and (iii) potentially suppressed by active cochlear implants used for hearing restoration. We propose that tinnitus can only develop after fast auditory fiber activity has stimulated the synapse formation between fast-spiking parvalbumin positive (PV+) interneurons and projecting neurons in the ascending auditory path and co-activated fronto-striatal networks after hearing onset. Thereafter, fast auditory fiber activity promotes feedforward and feedback inhibition mediated by PV+ interneuron activity in auditory-specific circuits. This inhibitory network enables enhanced stimulus resolution, attention-driven contrast improvement, and augmentation of auditory responses in central auditory pathways (neural gain) after damage of slow auditory fibers. When fast auditory fiber activity is lost, tonic PV+ interneuron activity is diminished, resulting in the prolonged response latencies, sudden hyperexcitability, enhanced cortical synchrony, elevated spontaneous gamma oscillations, and impaired attention/stress-control that have been described in previous tinnitus models. Moreover, because fast processing is gained through sensory experience, tinnitus would not exist in congenital deafness. Electrical cochlear stimulation may have the potential to re-establish tonic inhibitory networks and thus suppress tinnitus. The proposed framework unites many ideas of tinnitus pathophysiology and may catalyze cooperative efforts to develop tinnitus therapies

    Low-Resolution Molecular Models Reveal the Oligomeric State of the PPAR and the Conformational Organization of Its Domains in Solution

    Get PDF
    The peroxisome proliferator-activated receptors (PPARs) regulate genes involved in lipid and carbohydrate metabolism, and are targets of drugs approved for human use. Whereas the crystallographic structure of the complex of full length PPARγ and RXRα is known, structural alterations induced by heterodimer formation and DNA contacts are not well understood. Herein, we report a small-angle X-ray scattering analysis of the oligomeric state of hPPARγ alone and in the presence of retinoid X receptor (RXR). The results reveal that, in contrast with other studied nuclear receptors, which predominantly form dimers in solution, hPPARγ remains in the monomeric form by itself but forms heterodimers with hRXRα. The low-resolution models of hPPARγ/RXRα complexes predict significant changes in opening angle between heterodimerization partners (LBD) and extended and asymmetric shape of the dimer (LBD-DBD) as compared with X-ray structure of the full-length receptor bound to DNA. These differences between our SAXS models and the high-resolution crystallographic structure might suggest that there are different conformations of functional heterodimer complex in solution. Accordingly, hydrogen/deuterium exchange experiments reveal that the heterodimer binding to DNA promotes more compact and less solvent-accessible conformation of the receptor complex
    corecore