84 research outputs found
Gamma-ray emission expected from Kepler's SNR
Nonlinear kinetic theory of cosmic ray (CR) acceleration in supernova
remnants (SNRs) is used to investigate the properties of Kepler's SNR and, in
particular, to predict the gamma-ray spectrum expected from this SNR.
Observations of the nonthermal radio and X-ray emission spectra as well as
theoretical constraints for the total supernova (SN) explosion energy E_sn are
used to constrain the astronomical and particle acceleration parameters of the
system. Under the assumption that Kepler's SN is a type Ia SN we determine for
any given explosion energy E_sn and source distance d the mass density of the
ambient interstellar medium (ISM) from a fit to the observed SNR size and
expansion speed. This makes it possible to make predictions for the expected
gamma-ray flux. Exploring the expected distance range we find that for a
typical explosion energy E_sn=10^51 erg the expected energy flux of TeV
gamma-rays varies from 2x10^{-11} to 10^{-13} erg/(cm^2 s) when the distance
changes from d=3.4 kpc to 7 kpc. In all cases the gamma-ray emission is
dominated by \pi^0-decay gamma-rays due to nuclear CRs. Therefore Kepler's SNR
represents a very promising target for instruments like H.E.S.S., CANGAROO and
GLAST. A non-detection of gamma-rays would mean that the actual source distance
is larger than 7 kpc.Comment: 6 pages, 4 figures. Accepted for publication in Astronomy and
Astrophysics, minor typos correcte
Magnetic fields in supernova remnants and pulsar-wind nebulae
We review the observations of supernova remnants (SNRs) and pulsar-wind
nebulae (PWNe) that give information on the strength and orientation of
magnetic fields. Radio polarimetry gives the degree of order of magnetic
fields, and the orientation of the ordered component. Many young shell
supernova remnants show evidence for synchrotron X-ray emission. The spatial
analysis of this emission suggests that magnetic fields are amplified by one to
two orders of magnitude in strong shocks. Detection of several remnants in TeV
gamma rays implies a lower limit on the magnetic-field strength (or a
measurement, if the emission process is inverse-Compton upscattering of cosmic
microwave background photons). Upper limits to GeV emission similarly provide
lower limits on magnetic-field strengths. In the historical shell remnants,
lower limits on B range from 25 to 1000 microGauss. Two remnants show
variability of synchrotron X-ray emission with a timescale of years. If this
timescale is the electron-acceleration or radiative loss timescale, magnetic
fields of order 1 mG are also implied. In pulsar-wind nebulae, equipartition
arguments and dynamical modeling can be used to infer magnetic-field strengths
anywhere from about 5 microGauss to 1 mG. Polarized fractions are considerably
higher than in SNRs, ranging to 50 or 60% in some cases; magnetic-field
geometries often suggest a toroidal structure around the pulsar, but this is
not universal. Viewing-angle effects undoubtedly play a role. MHD models of
radio emission in shell SNRs show that different orientations of upstream
magnetic field, and different assumptions about electron acceleration, predict
different radio morphology. In the remnant of SN 1006, such comparisons imply a
magnetic-field orientation connecting the bright limbs, with a non-negligible
gradient of its strength across the remnant.Comment: 20 pages, 24 figures; to be published in SpSciRev. Minor wording
change in Abstrac
Green function techniques in the treatment of quantum transport at the molecular scale
The theoretical investigation of charge (and spin) transport at nanometer
length scales requires the use of advanced and powerful techniques able to deal
with the dynamical properties of the relevant physical systems, to explicitly
include out-of-equilibrium situations typical for electrical/heat transport as
well as to take into account interaction effects in a systematic way.
Equilibrium Green function techniques and their extension to non-equilibrium
situations via the Keldysh formalism build one of the pillars of current
state-of-the-art approaches to quantum transport which have been implemented in
both model Hamiltonian formulations and first-principle methodologies. We offer
a tutorial overview of the applications of Green functions to deal with some
fundamental aspects of charge transport at the nanoscale, mainly focusing on
applications to model Hamiltonian formulations.Comment: Tutorial review, LaTeX, 129 pages, 41 figures, 300 references,
submitted to Springer series "Lecture Notes in Physics
Sharing responsibilities in fisheries management; Part 2 - Annex: case studies
This report focuses on the evaluation of the process of devolution of responsibilities in the current institutional landscape in European fisheries management. In particular the analysis focuses on how the present management systems contribute to good governance. We follow the criteria as suggested in the EU communication on governance (EU 2001): Openness, Participation, Accountability, Effectiveness and Coherence. The analysis of the various proposed fisheries management models confirms what would then be the hypothesis: There is no definitive alternative management model that can be applied - given the wide spectrum of circumstances surrounding fisheries activity in the six countries included in the study (Norway, Denmark, the United Kingdom, France, The Netherlands and Spain), or at least, none as clear-cut as the models proposed for regionalisation/devolution a decade ago. There are significant differences between these proposals for more decentralised fisheries management systems and the various alternative fisheries management systems proposed require improved efficiency in the application of policies and highlight the importance of local level involvement, whilst providing the opportunity to confer greater legitimacy on policies through improved participation
Association Between Bilirubin, Atazanavir, and Cardiovascular Disease Events Among People Living With HIV Across the United States
Objective: Bilirubin is an antioxidant that may suppress lipid oxidation. Elevated bilirubin is associated with decreased cardiovascular events in HIV-uninfected populations. We examined these associations in people living with HIV (PLWH). Methods: Potential myocardial infarctions (MIs) and strokes were centrally adjudicated. We examined MI types: type 1 MI (T1MI) from atherosclerotic plaque instability and type 2 MI (T2MI) in the setting of oxygen demand/supply mismatch such as sepsis. We used multivariable Cox regression analyses to determine associations between total bilirubin levels and outcomes adjusting for traditional and HIV-specific risk factors. To minimize confounding by hepatobiliary disease, we conducted analyses limited to bilirubin values <2.1 mg/dL; among those with fibrosis-4 values <3.25; and among everyone. We repeated analyses stratified by hepatitis C status and time-updated atazanavir use. Results: Among 25,816 PLWH, there were 392 T1MI and 356 T2MI during follow-up. Adjusted hazard ratios for the association of higher bilirubin levels with T1MI were not significant. Higher bilirubin levels were associated with T2MI. By contrast, among PLWH on atazanavir, higher bilirubin levels were associated with fewer T2MI (hazard ratio 0.56:0.33-1.00). Higher bilirubin levels among those on atazanavir were associated with fewer T1MI combined with ischemic stroke. Limitations: Analyses were conducted with total rather than unconjugated bilirubin. Conclusions: Among PLWH, higher bilirubin levels were associated with T2MI among some subgroups. However, among those on atazanavir, there was a protective association between bilirubin and T2MI. These findings demonstrate different associations between outcomes and elevated bilirubin due to diverse causes and the importance of distinguishing MI types
Types of Stroke among People Living with HIV in the United States
Background: Most studies of stroke in people living with HIV (PLWH) do not use verified stroke diagnoses, are small, and/or do not differentiate stroke types and subtypes.Setting: CNICS, a U.S. multisite clinical cohort of PLWH in care.Methods: We implemented a centralized adjudication stroke protocol to identify stroke type, subtype, and precipitating conditions identified as direct causes including infection and illicit drug use in a large diverse HIV cohort.Results: Among 26,514 PLWH, there were 401 strokes, 75% of which were ischemic. Precipitating factors such as sepsis or same-day cocaine use were identified in 40% of ischemic strokes. Those with precipitating factors were younger, had more severe HIV disease, and fewer traditional stroke risk factors such as diabetes and hypertension. Ischemic stroke subtypes included cardioembolic (20%), large vessel atherosclerosis (13%), and small vessel (24%) ischemic strokes. Individuals with small vessel strokes were older, were more likely to have a higher current CD4 cell count than those with cardioembolic strokes and had the highest mean blood pressure of the ischemic stroke subtypes.Conclusion: Ischemic stroke, particularly small vessel and cardioembolic subtypes, were the most common strokes among PLWH. Traditional and HIV-related risk factors differed by stroke type/subtype. Precipitating factors including infections and drug use were common. These results suggest that there may be different biological phenomena occurring among PLWH and that understanding HIV-related and traditional risk factors and in particular precipitating factors for each type/subtype may be key to understanding, and therefore preventing, strokes among PLWH
Retroperitoneal Sarcoma (RPS) Target Volume and Organ at Risk (OAR) Contour Delineation Agreement Among RTOG Sarcoma Radiation Oncologists
Biological, physical and clinical aspects of cancer treatment with ionising radiatio
- …