84 research outputs found

    Gamma-ray emission expected from Kepler's SNR

    Full text link
    Nonlinear kinetic theory of cosmic ray (CR) acceleration in supernova remnants (SNRs) is used to investigate the properties of Kepler's SNR and, in particular, to predict the gamma-ray spectrum expected from this SNR. Observations of the nonthermal radio and X-ray emission spectra as well as theoretical constraints for the total supernova (SN) explosion energy E_sn are used to constrain the astronomical and particle acceleration parameters of the system. Under the assumption that Kepler's SN is a type Ia SN we determine for any given explosion energy E_sn and source distance d the mass density of the ambient interstellar medium (ISM) from a fit to the observed SNR size and expansion speed. This makes it possible to make predictions for the expected gamma-ray flux. Exploring the expected distance range we find that for a typical explosion energy E_sn=10^51 erg the expected energy flux of TeV gamma-rays varies from 2x10^{-11} to 10^{-13} erg/(cm^2 s) when the distance changes from d=3.4 kpc to 7 kpc. In all cases the gamma-ray emission is dominated by \pi^0-decay gamma-rays due to nuclear CRs. Therefore Kepler's SNR represents a very promising target for instruments like H.E.S.S., CANGAROO and GLAST. A non-detection of gamma-rays would mean that the actual source distance is larger than 7 kpc.Comment: 6 pages, 4 figures. Accepted for publication in Astronomy and Astrophysics, minor typos correcte

    Magnetic fields in supernova remnants and pulsar-wind nebulae

    Full text link
    We review the observations of supernova remnants (SNRs) and pulsar-wind nebulae (PWNe) that give information on the strength and orientation of magnetic fields. Radio polarimetry gives the degree of order of magnetic fields, and the orientation of the ordered component. Many young shell supernova remnants show evidence for synchrotron X-ray emission. The spatial analysis of this emission suggests that magnetic fields are amplified by one to two orders of magnitude in strong shocks. Detection of several remnants in TeV gamma rays implies a lower limit on the magnetic-field strength (or a measurement, if the emission process is inverse-Compton upscattering of cosmic microwave background photons). Upper limits to GeV emission similarly provide lower limits on magnetic-field strengths. In the historical shell remnants, lower limits on B range from 25 to 1000 microGauss. Two remnants show variability of synchrotron X-ray emission with a timescale of years. If this timescale is the electron-acceleration or radiative loss timescale, magnetic fields of order 1 mG are also implied. In pulsar-wind nebulae, equipartition arguments and dynamical modeling can be used to infer magnetic-field strengths anywhere from about 5 microGauss to 1 mG. Polarized fractions are considerably higher than in SNRs, ranging to 50 or 60% in some cases; magnetic-field geometries often suggest a toroidal structure around the pulsar, but this is not universal. Viewing-angle effects undoubtedly play a role. MHD models of radio emission in shell SNRs show that different orientations of upstream magnetic field, and different assumptions about electron acceleration, predict different radio morphology. In the remnant of SN 1006, such comparisons imply a magnetic-field orientation connecting the bright limbs, with a non-negligible gradient of its strength across the remnant.Comment: 20 pages, 24 figures; to be published in SpSciRev. Minor wording change in Abstrac

    Green function techniques in the treatment of quantum transport at the molecular scale

    Full text link
    The theoretical investigation of charge (and spin) transport at nanometer length scales requires the use of advanced and powerful techniques able to deal with the dynamical properties of the relevant physical systems, to explicitly include out-of-equilibrium situations typical for electrical/heat transport as well as to take into account interaction effects in a systematic way. Equilibrium Green function techniques and their extension to non-equilibrium situations via the Keldysh formalism build one of the pillars of current state-of-the-art approaches to quantum transport which have been implemented in both model Hamiltonian formulations and first-principle methodologies. We offer a tutorial overview of the applications of Green functions to deal with some fundamental aspects of charge transport at the nanoscale, mainly focusing on applications to model Hamiltonian formulations.Comment: Tutorial review, LaTeX, 129 pages, 41 figures, 300 references, submitted to Springer series "Lecture Notes in Physics

    Sharing responsibilities in fisheries management; Part 2 - Annex: case studies

    Get PDF
    This report focuses on the evaluation of the process of devolution of responsibilities in the current institutional landscape in European fisheries management. In particular the analysis focuses on how the present management systems contribute to good governance. We follow the criteria as suggested in the EU communication on governance (EU 2001): Openness, Participation, Accountability, Effectiveness and Coherence. The analysis of the various proposed fisheries management models confirms what would then be the hypothesis: There is no definitive alternative management model that can be applied - given the wide spectrum of circumstances surrounding fisheries activity in the six countries included in the study (Norway, Denmark, the United Kingdom, France, The Netherlands and Spain), or at least, none as clear-cut as the models proposed for regionalisation/devolution a decade ago. There are significant differences between these proposals for more decentralised fisheries management systems and the various alternative fisheries management systems proposed require improved efficiency in the application of policies and highlight the importance of local level involvement, whilst providing the opportunity to confer greater legitimacy on policies through improved participation

    Association Between Bilirubin, Atazanavir, and Cardiovascular Disease Events Among People Living With HIV Across the United States

    Get PDF
    Objective: Bilirubin is an antioxidant that may suppress lipid oxidation. Elevated bilirubin is associated with decreased cardiovascular events in HIV-uninfected populations. We examined these associations in people living with HIV (PLWH). Methods: Potential myocardial infarctions (MIs) and strokes were centrally adjudicated. We examined MI types: type 1 MI (T1MI) from atherosclerotic plaque instability and type 2 MI (T2MI) in the setting of oxygen demand/supply mismatch such as sepsis. We used multivariable Cox regression analyses to determine associations between total bilirubin levels and outcomes adjusting for traditional and HIV-specific risk factors. To minimize confounding by hepatobiliary disease, we conducted analyses limited to bilirubin values <2.1 mg/dL; among those with fibrosis-4 values <3.25; and among everyone. We repeated analyses stratified by hepatitis C status and time-updated atazanavir use. Results: Among 25,816 PLWH, there were 392 T1MI and 356 T2MI during follow-up. Adjusted hazard ratios for the association of higher bilirubin levels with T1MI were not significant. Higher bilirubin levels were associated with T2MI. By contrast, among PLWH on atazanavir, higher bilirubin levels were associated with fewer T2MI (hazard ratio 0.56:0.33-1.00). Higher bilirubin levels among those on atazanavir were associated with fewer T1MI combined with ischemic stroke. Limitations: Analyses were conducted with total rather than unconjugated bilirubin. Conclusions: Among PLWH, higher bilirubin levels were associated with T2MI among some subgroups. However, among those on atazanavir, there was a protective association between bilirubin and T2MI. These findings demonstrate different associations between outcomes and elevated bilirubin due to diverse causes and the importance of distinguishing MI types

    Types of Stroke among People Living with HIV in the United States

    Get PDF
    Background: Most studies of stroke in people living with HIV (PLWH) do not use verified stroke diagnoses, are small, and/or do not differentiate stroke types and subtypes.Setting: CNICS, a U.S. multisite clinical cohort of PLWH in care.Methods: We implemented a centralized adjudication stroke protocol to identify stroke type, subtype, and precipitating conditions identified as direct causes including infection and illicit drug use in a large diverse HIV cohort.Results: Among 26,514 PLWH, there were 401 strokes, 75% of which were ischemic. Precipitating factors such as sepsis or same-day cocaine use were identified in 40% of ischemic strokes. Those with precipitating factors were younger, had more severe HIV disease, and fewer traditional stroke risk factors such as diabetes and hypertension. Ischemic stroke subtypes included cardioembolic (20%), large vessel atherosclerosis (13%), and small vessel (24%) ischemic strokes. Individuals with small vessel strokes were older, were more likely to have a higher current CD4 cell count than those with cardioembolic strokes and had the highest mean blood pressure of the ischemic stroke subtypes.Conclusion: Ischemic stroke, particularly small vessel and cardioembolic subtypes, were the most common strokes among PLWH. Traditional and HIV-related risk factors differed by stroke type/subtype. Precipitating factors including infections and drug use were common. These results suggest that there may be different biological phenomena occurring among PLWH and that understanding HIV-related and traditional risk factors and in particular precipitating factors for each type/subtype may be key to understanding, and therefore preventing, strokes among PLWH
    • …
    corecore