4 research outputs found
Close-Packing of Clusters: Application to Al_100
The lowest energy configurations of close-packed clusters up to N=110 atoms
with stacking faults are studied using the Monte Carlo method with Metropolis
algorithm. Two types of contact interactions, a pair-potential and a many-atom
interaction, are used. Enhanced stability is shown for N=12, 26, 38, 50, 59,
61, 68, 75, 79, 86, 100 and 102, of which only the sizes 38, 75, 79, 86, and
102 are pure FCC clusters, the others having stacking faults. A connection
between the model potential and density functional calculations is studied in
the case of Al_100. The density functional calculations are consistent with the
experimental fact that there exist epitaxially grown FCC clusters starting from
relatively small cluster sizes. Calculations also show that several other
close-packed motifs existwith comparable total energies.Comment: 9 pages, 7 figure
Evolution of electronic and ionic structure of Mg-clusters with the growth cluster size
The optimized structure and electronic properties of neutral and singly
charged magnesium clusters have been investigated using ab initio theoretical
methods based on density-functional theory and systematic post-Hartree-Fock
many-body perturbation theory accounting for all electrons in the system. We
have systematically calculated the optimized geometries of neutral and singly
charged magnesium clusters consisting of up to 21 atoms, electronic shell
closures, binding energies per atom, ionization potentials and the gap between
the highest occupied and the lowest unoccupied molecular orbitals. We have
investigated the transition to the hcp structure and metallic evolution of the
magnesium clusters, as well as the stability of linear chains and rings of
magnesium atoms. The results obtained are compared with the available
experimental data and the results of other theoretical works.Comment: 30 pages, 10 figures, 3 table