7 research outputs found

    Particle-in-cell simulations of circularly polarised Alfvén wave phase mixing: A new mechanism for electron acceleration in collisionless plasmas

    Get PDF
    In this work we used Particle-In-Cell simulations to study the interaction of circularly polarised Alhén waves with one dimensional plasma density inhomogeneities transverse to the uniform magnetic field (phase mixing) in collisionless plasmas. In our preliminary work we reported discovery of a new electron acceleration mechanism, in which progressive distortion of the Alfvén wave front, due to the differences in local Alfvén speed, generates an oblique (nearly parallel to the magnetic field) electrostatic field. The latter accelerates electrons through the Landau resonance. Here we report a detailed study of this novel mechanism, including: (i) analysis of broadening of the ion distribution function due to the presence of Alfvén waves; and (ii) the generation of compressive perturbations due to both weak non-linearity and plasma density inhomogeneity. The amplitude decay law in the inhomogeneous regions, in the kinetic regime, is demonstrated to be the same as in the MHD approximation described by Heyvaerts & Priest (1983, A&A, 117, 220)

    A Tale of Two Current Sheets

    Full text link
    I outline a new model of particle acceleration in the current sheet separating the closed from the open field lines in the force-free model of pulsar magnetospheres, based on reconnection at the light cylinder and "auroral" acceleration occurring in the return current channel that connects the light cylinder to the neutron star surface. I discuss recent studies of Pulsar Wind Nebulae, which find that pair outflow rates in excess of those predicted by existing theories of pair creation occur, and use those results to point out that dissipation of the magnetic field in a pulsar's wind upstream of the termination shock is restored to life as a viable model for the solution of the "σ\sigma" problem as a consequence of the lower wind 4-velocity implied by the larger mass loading.Comment: 17 pages, 6 figures, Invited Review, Proceedings of the "ICREA Workshop on The High-Energy Emission from Pulsars and their Systems", Sant Cugat, Spain, April 12-16, 201

    A Direct Comparison Between EUV Coronal Flux and Helium Resonance Line Photon Flux from SOHO/CDS Data

    Full text link
    In the wealth of EUV spectroscopic and imaging data gathered by the SOHO and TRACE missions, a prominent role is played by the helium resonance emission. For example, He I lines are among the most intense features in CDS/NIS spectra, while the EIT 304 waveband (dominated by He II emission) is routinely employed to map the structure of the solar chromosphere and transition region. However, no 'standard' model has emerged so far that is able to interpret observed He spectra/images to a satisfactory degree of self-consistency. Recent research on the problem of the formation of the solar helium spectrum tends to rule out a dominant role of coronal radiation in exciting He resonance lines. However, while evidence for this result is strong, it is based on indirect tests. Here we present a preliminary assessment of this issue based on a more direct approach, which involves a measure with CDS/GIS of the photoionizing EUV radiation. This measure can be directly compared with the observed flux in the main He I and He II resonance lines observed with CDS/NIS2

    The EUV Helium Spectrum in the Quiet Sun: A By-Product of Coronal Emission?

    Full text link
    In this paper we test one of the mechanisms proposed to explain the intensities and other observed properties of the solar helium spectrum, and in particular of its Extreme-Ultraviolet (EUV) resonance lines. The so-called Photoionisation-Recombination (P-R) mechanism involves photoionisation of helium atoms and ions by EUV coronal radiation, followed by recombination cascades. We present calibrated measurements of EUV flux obtained with the two CDS spectrometers on board SOHO, in quiescent solar regions. We were able to obtain an essentially complete estimate of the total photoionizing flux in the wavelength range below 504 A (the photoionisation threshold for He(I)), as well as simultaneous measurements with the same instruments of the intensities of the strongest EUV helium lines: He(II) lambda304, He(I) lambda584, and He(I) lambda537. We find that there are not enough EUV photons to account for the observed helium line intensities. More specifically, we conclude that He(II) intensities cannot be explained by the P-R mechanism. Our results, however, leave open the possibility that the He(I) spectrum could be formed by the P-R mechanism, with the He(II) lambda304 line as a significant photoionizating source

    Relative intensity calibration of CDS-GIS detectors on SOHO using a plasma diagnostic technique

    Full text link
    The internal intensity calibration of the Coronal Diagnostic Spectrometer (CDS) - Grazing Incidence Spectrometer (GIS) is studied using the Arcetri diagnostic method. A large number of spectral lines observed by the four GIS detectors in solar active and quiet regions is analysed in order to determine the relative intensity calibration curve of the instrument. The plasma diagnostic method developed in Arcetri allows the measurement of the correction factors to the pre-flight CDS - GIS internal intensity calibration curves and of the relative calibration between different detectors. No gross deviations from the pre-flight calibration are found. Also the GIS 3 and GIS 4 second order sensitivites are measured. The problems of fixed patterning, ghosting, anomalous line profiles and widths are also discussed, and a list of lines suitable for further diagnostic studies with GIS is presented

    Coronal loops, flare ribbons and aurora during slip-running

    Full text link
    International audienceSolar two ribbon flares are commonly explained by magnetic field reconnections in the low corona. During the reconnection energetic particles (electrons and protons) are accelerated from the reconnection site. These particles are following the magnetic field lines down to the chromosphere. As the plasma density is higher in these lower layers, there are collisions and emission of radiation. Thus bright ribbons are observed at both ends of flare loops. These ribbons are typically observed in Halpha and in EUV with SoHO and TRACE. As the time is going, these ribbons are expanding away of each other. In most studied models, the reconnection site is a separator line, where two magnetic separatrices intersect. They define four distinct connectivity domains, across which the magnetic connectivity changes discontinuously. In this paper, we present a generalization of this model to 3D complex magnetic topologies where there are no null points, but quasi-separatrices layers instead. In that case, while the ribbons spread away during reconnection, we show that magnetic field lines can quickly slip along them. We propose that this new phenomenon could explain fast extension of Halpha and TRACE 1600 Å ribbons, fast moving HXR footpoints along the ribbons as observed by RHESSI, and that it is observed in soft X rays with Hinode/XRT
    corecore