24 research outputs found
In Situ Characterization of Human Lymphoid Tissue Immune Cells by Multispectral Confocal Imaging and Quantitative Image Analysis; Implications for HIV Reservoir Characterization
CD4 T cells are key mediators of adaptive immune responses during infection and vaccination. Within secondary lymphoid organs, helper CD4 T cells, particularly those residing in germinal centers known as follicular helper T cells (Tfh), provide critical help to B-cells to promote their survival, isotype switching and selection of high affinity memory B-cells. On the other hand, the important role of Tfh cells for the maintenance of HIV reservoir is well documented. Thus, interrogating and better understanding the tissue specific micro-environment and immune subsets that contribute to optimal Tfh cell differentiation and function is important for designing successful prevention and cure strategies. Here, we describe the development and optimization of eight multispectral confocal microscopy immunofluorescence panels designed for in depth characterization and immune-profiling of relevant immune cells in formalin-fixed paraffin-embedded human lymphoid tissue samples. We provide a comprehensive library of antibodies to use for the characterization of CD4+ T-cells -including Tfh and regulatory T-cells- as well as CD8 T-cells, B-cells, macrophages and dendritic cells and discuss how the resulting multispectral confocal datasets can be quantitatively dissected using the HistoCytometry pipeline to collect information about relative frequencies and immune cell spatial distributions. Cells harboring actively transcribed virus are analyzed using an in-situ hybridization assay for the characterization of HIV mRNA positive cells in combination with additional protein markers (multispectral RNAscope). The application of this methodology to lymphoid tissues offers a means to interrogate multiple relevant immune cell targets simultaneously at increased resolution in a reproducible manner to guide CD4 T-cell studies in infection and vaccination
Recommended from our members
Characterization of Intact Proviruses in Blood and Lymph Node from HIV-Infected Individuals Undergoing Analytical Treatment Interruption.
The role of lymphoid tissue as a potential source of HIV-1 rebound following interruption of antiretroviral therapy (ART) is uncertain. To address this issue, we compared the latent viruses obtained from CD4+ T cells in peripheral blood and lymph nodes to viruses emerging during treatment interruption. Latent viruses were characterized by sequencing near-full-length (NFL) proviral DNA and env from viral outgrowth assays (VOAs). Five HIV-1-infected individuals on ART were studied, four of whom participated in a clinical trial of a TLR9 agonist that included an analytical treatment interruption. We found that 98% of intact or replication-competent clonal sequences overlapped between blood and lymph node. In contrast, there was no overlap between 205 latent reservoir and 125 rebound sequences in the four individuals who underwent treatment interruption. However, rebound viruses could be accounted for by recombination. The data suggest that CD4+ T cells carrying latent viruses circulate between blood and lymphoid tissues in individuals on ART and support the idea that recombination may play a role in the emergence of rebound viremia.IMPORTANCE HIV-1 persists as a latent infection in CD4+ T cells that can be found in lymphoid tissues in infected individuals during ART. However, the importance of this tissue reservoir and its contribution to viral rebound upon ART interruption are not clear. In this study, we sought to compare latent HIV-1 from blood and lymph node CD4+ T cells from five HIV-1-infected individuals. Further, we analyzed the contribution of lymph node viruses to viral rebound. We observed that the frequencies of intact proviruses were the same in blood and lymph node. Moreover, expanded clones of T cells bearing identical proviruses were found in blood and lymph node. These latent reservoir sequences did not appear to be the direct origin of rebound virus. Instead, latent proviruses were found to contribute to the rebound compartment by recombination
CD32 is expressed on cells with transcriptionally active HIV but does not enrich for HIV DNA in resting T cells
The persistence of HIV reservoirs, including latently infected, resting CD4+ T cells, is the major obstacle to cure HIV infection. CD32a expression was recently reported to mark CD4+ T cells harboring a replication-competent HIV reservoir during antiretroviral therapy (ART) suppression. We aimed to determine whether CD32 expression marks HIV latently or transcriptionally active infected CD4+ T cells. Using peripheral blood and lymphoid tissue of ART-treated HIV+ or SIV+ subjects, we found that most of the circulating memory CD32+ CD4+ T cells expressed markers of activation, including CD69, HLA-DR, CD25, CD38, and Ki67, and bore a TH2 phenotype as defined by CXCR3, CCR4, and CCR6. CD32 expression did not selectively enrich for HIV- or SIV-infected CD4+ T cells in peripheral blood or lymphoid tissue; isolated CD32+ resting CD4+ T cells accounted for less than 3% of the total HIV DNA in CD4+ T cells. Cell-associated HIV DNA and RNA loads in CD4+ T cells positively correlated with the frequency of CD32+ CD69+ CD4+ T cells but not with CD32 expression on resting CD4+ T cells. Using RNA fluorescence in situ hybridization, CD32 coexpression with HIV RNA or p24 was detected after in vitro HIV infection (peripheral blood mononuclear cell and tissue) and in vivo within lymph node tissue from HIV-infected individuals. Together, these results indicate that CD32 is not a marker of resting CD4+ T cells or of enriched HIV DNA–positive cells after ART; rather, CD32 is predominately expressed on a subset of activated CD4+ T cells enriched for transcriptionally active HIV after long-term ART
Elite control of HIV is associated with distinct functional and transcriptional signatures in lymphoid tissue CD8+ T cells
The functional properties of circulating CD8+ T cells have been associated with immune control of HIV. However, viral replication occurs predominantly in secondary lymphoid tissues, such as lymph nodes (LNs). We used an integrated single-cell approach to characterize effective HIV-specific CD8+ T cell responses in the LNs of elite controllers (ECs), defined as individuals who suppress viral replication in the absence of antiretroviral therapy (ART). Higher frequencies of total memory and follicle-homing HIV-specific CD8+ T cells were detected in the LNs of ECs compared with the LNs of chronic progressors (CPs) who were not receiving ART. Moreover, HIV-specific CD8+ T cells potently suppressed viral replication without demonstrable cytolytic activity in the LNs of ECs, which harbored substantially lower amounts of CD4+ T cell–associated HIV DNA and RNA compared with the LNs of CPs. Single-cell RNA sequencing analyses further revealed a distinct transcriptional signature among HIV-specific CD8+ T cells from the LNs of ECs, typified by the down-regulation of inhibitory receptors and cytolytic molecules and the up-regulation of multiple cytokines, predicted secreted factors, and components of the protein translation machinery. Collectively, these results provide a mechanistic framework to expedite the identification of novel antiviral factors, highlighting a potential role for the localized deployment of noncytolytic functions as a determinant of immune efficacy against HIV
Assessment of HIV-1 integration in tissues and subsets across infection stages
The integration of HIV DNA into the host genome contributes to lifelong infection in most individuals. Few studies have examined integration in lymphoid tissue, where HIV predominantly persists before and after antiretroviral treatment (ART). Of particular interest is whether integration site distributions differ between infection stages with paired blood and tissue comparisons. Here, we profiled HIV integration site distributions in sorted memory, tissue-resident, and/or follicular helper CD4+ T cell subsets from paired blood and lymphoid tissue samples from acute, chronic, and ART-treated individuals. We observed minor differences in the frequency of nonintronic and nondistal intergenic sites, varying with tissue and residency phenotypes during ART. Genomic and epigenetic annotations were generally similar. Clonal expansion of cells marked by identical integration sites was detected, with increased detection in chronic and ART-treated individuals. However, overlap between or within CD4+ T cell subsets or tissue compartments was only observed in 8 unique sites of the 3540 sites studied. Together, these findings suggest that shared integration sites between blood and tissue may, depending on the tissue site, be the exception rather than the rule and indicate that additional studies are necessary to fully understand the heterogeneity of tissue-sequestered HIV reservoirs
Intact Type I Interferon Production and IRF7 Function in Sooty Mangabeys
<div><p>In contrast to pathogenic HIV/SIV infections of humans and rhesus macaques (RMs), natural SIV infection of sooty mangabeys (SMs) is typically non-pathogenic despite high viremia. Several studies suggested that low immune activation and relative resistance of CD4+ central memory T-cells from virus infection are mechanisms that protect SMs from AIDS. In 2008 it was reported that plasmacytoid dendritic cells (pDCs) of SMs exhibit attenuated interferon-alpha (IFN-α) responses to TLR7/9 ligands <i>in vitro</i>, and that species-specific amino acid substitutions in SM Interferon Regulatory Factor-7 (IRF7) are responsible for this observation. Based on these findings, these authors proposed that “muted” IFN-α responses are responsible for the benign nature of SIV infection in SMs. However, other studies indicated that acutely SIV-infected SMs show robust IFN-α responses and marked upregulation of Interferon Stimulated Genes (ISGs). To investigate this apparent disparity, we first examined the role of the reported IRF7 amino acid substitutions in SMs. To this end, we sequenced all IRF7 exons in 16 breeders, and exons displaying variability (exons 2,3,5,6,7,8) in the remainder of the colony (177 animals). We found that the reported Ser-Gly substitution at position 191 was a sequencing error, and that several of the remaining substitutions represent only minor alleles. In addition, functional assays using recombinant SM IRF7 showed no defect in its ability to translocate in the nucleus and drive transcription from an IFN-α promoter. Furthermore, <i>in vitro</i> stimulation of SM peripheral blood mononuclear cells with either the TLR7 agonist CL097 or SIV<sub>mac239</sub> induced an 500–800-fold induction of IFN-α and IFN-β mRNA, and levels of IFN-α production by pDCs similar to those of RMs or humans. These data establish that IFN-α and IRF7 signaling in SMs are largely intact, with differences with RMs that are minor and unlikely to play any role in the AIDS resistance of SIV-infected SMs.</p></div
Transactivation of IFNA4 promoter and nuclear localization by Sooty Mangabey IRF7.
<p>(A) HEK293 cells were transfected with the luciferase reporter plasmid containing the human IFNA4 promoter, TBK1 and IRF7 constructs from human, rhesus, and sooty mangabeys, or vehicle, as indicated. Luciferase expressed from the SV40 promoter was transfected as a positive control. Luciferase activity was measured 24 h after transfection. Values represent the average of triplicate wells for Rhesus and Sooty-IRF7 and duplicate wells for the remaining samples. Data are representative of three individual experiments. (B) COS-7 cells were transfected with Sooty-IRF7-GFP and TBK1, or with vehicle for 24 hrs, then stained with DAPI. Magnification is indicated to the right of panels. Data are representative of three experiments.</p
Sooty mangabey pDCs produce IFN-α in response to TLR7 agonists and SIVmac239.
<p>(A) PBMCs from SIV-negative SMs and SIV-negative RMs were incubated for 18 hr with 10 µM CL097 or 3 µg/ml SIVmac239 and stained for intracellular IFN-α. The lower panels depict uninfected human PBMCs stimulated with 10 µM CL097 or 3 µg/ml AT2 HIV-1. Insets denote percentages of IFN-α+ pDCs within the pDC population. (B) Cumulative data for CL097 stimulations, average percentage of pDCs expressing IFN-α are denoted by horizontal bars. (C) Percentage of IFN-α+ pDCs after 18 hr stimulation with AT2 SIV<sub>mac239</sub>, or AT2 HIV-1 (for human PBMCs). Means are shown by horizontal bars. The species (RM, SM or HU) from which PBMCs were prepared and virus strain used for stimulation is depicted below the X-axis. (D) RNA production of IFN-α in PBMCs from SMs and RMs was assessed using qPCR. Fold-changes were calculated as relative to unstimulated cells, after GAPDH normalization. Experiments are the average of three animals, each measured in triplicate wells. All viral stimulation experiments (ICS and qPCR) were performed using AT2-inactivated preparations of SIV<sub>mac239</sub> or HIV-1.</p
Association of SM polymorphisms with markers of SIV disease progression.
a<p>mean and S.E. are indicated for denoted genotypes; degress of freedom are indicated by parantheses.</p>b<p>significance threshold corrected for multiple hypothesis testing (Bonferroni) is 0.01.</p
Genotype frequencies of predicted amino acid substitutions in Sooty Mangabey IRF7.
a<p>aa position in SM IRF7.</p