404 research outputs found
1D selective confinement and diffusion of metal atoms on graphene
The role of moiré graphene superstructures in favoring confined adsorption of different metal atoms is an intriguing problem not yet completely solved. Graphene (G) grown on Ni(100) forms a striped moiré pattern of valleys, where G approaches the nickel substrate and interacts with it rather strongly, and ridges, where G stays far away from the substrate and acts almost free-standing. Combining density functional theory (DFT) calculations and scanning-tunneling microscopy (STM) measurements, we show that this peculiar moiré constitutes a regular nanostructured template on a 2D support, confining in 1D trails single metal atoms and few atoms clusters. DFT calculations show that the confinement is selective and highly dependent on the atomic species, with some species preferring to adsorb on ridges and the other showing preference for valleys. Co and Au adsorbates, for instance, have opposite behavior, as predicted by DFT and observed by STM. The origin of such disparate behavior is traced back to the electrostatic interaction between the charged adsorbate and the nickel surface. Moreover, the selectivity is not restricted to the adsorption process only, but persists as adsorbate starts its diffusion, resulting in unidirectional mass transport on a continuous 2D support. These findings hold great promise for exploiting tailored nanostructured templates in a wide range of potential applications involving mass transport along element-specific routes
Exceptionally Stable Cobalt Nanoclusters on Functionalized Graphene
To improve reactivity and achieve a higher material efficiency, catalysts are often used in the form of clusters with nanometer dimensions, down to single atoms. Since the corresponding properties are highly structure-dependent, a suitable support is thus required to ensure cluster stability during operating conditions. Herein, an efficient method to stabilize cobalt nanoclusters on graphene grown on nickel substrates, exploiting the anchoring effect of nickel atoms incorporated in the carbon network is presented. The anchored nanoclusters are studied by in situ variable temperature scanning tunneling microscopy at different temperatures and upon gas exposure. Cluster stability upon annealing up to 200 °C and upon CO exposure at least up to 1 × 10−6 mbar CO partial pressure is demonstrated. Moreover, the dimensions of the cobalt nanoclusters remain surprisingly small (<3 nm diameter) with a narrow size distribution. Density functional theory calculations demonstrate that the interplay between the low diffusion barrier on graphene on nickel and the strong anchoring effect of the nickel atoms leads to the increased stability and size selectivity of these clusters. This anchoring technique is expected to be applicable also to other cases, with clear advantages for transition metals that are usually difficult to stabilize
Tuning graphene doping by carbon monoxide intercalation at the Ni(111) interface
Under near-ambient pressure conditions, carbon monoxide molecules intercalate underneath an epitaxial graphene monolayer grown on Ni(111), getting trapped into the confined region at the interface. On the basis of ab-initio density functional theory calculations, we provide here a full characterization of the intercalated CO pattern, highlighting the modifications induced on the graphene electronic structure. For CO coverages as low as 0.14 monolayer (ML), the graphene layer is spatially decoupled from the metallic substrate, with a significant C 1s core level shift towards lower binding energies. The most relevant signature of the CO intercalation is a clear switching of the graphene doping state, which changes from n-type, when strongly interacting with the metal surface, to p-type. The shift of the Dirac cone linearly depends on the CO coverage, reaching about 0.9 eV for the saturation value of 0.57 ML. Theoretical predictions are compared with the results of scanning tunnelling microscopy, low-energy electron diffraction and photoemission spectroscopy experiments, which confirm the proposed scenario for the nearly saturated intercalated CO system.
This result opens the way to the application of the Graphene/Ni(111) interface as gas sensor to easily detect and quantify the presence of carbon monoxide
Racial differences in systemic sclerosis disease presentation: a European Scleroderma Trials and Research group study
Objectives. Racial factors play a significant role in SSc. We evaluated differences in SSc presentations between white patients (WP), Asian patients (AP) and black patients (BP) and analysed the effects of geographical locations.Methods. SSc characteristics of patients from the EUSTAR cohort were cross-sectionally compared across racial groups using survival and multiple logistic regression analyses.Results. The study included 9162 WP, 341 AP and 181 BP. AP developed the first non-RP feature faster than WP but slower than BP. AP were less frequently anti-centromere (ACA; odds ratio (OR) = 0.4, P < 0.001) and more frequently anti-topoisomerase-I autoantibodies (ATA) positive (OR = 1.2, P = 0.068), while BP were less likely to be ACA and ATA positive than were WP [OR(ACA) = 0.3, P < 0.001; OR(ATA) = 0.5, P = 0.020]. AP had less often (OR = 0.7, P = 0.06) and BP more often (OR = 2.7, P < 0.001) diffuse skin involvement than had WP.AP and BP were more likely to have pulmonary hypertension [OR(AP) = 2.6, P < 0.001; OR(BP) = 2.7, P = 0.03 vs WP] and a reduced forced vital capacity [OR(AP) = 2.5, P < 0.001; OR(BP) = 2.4, P < 0.004] than were WP. AP more often had an impaired diffusing capacity of the lung than had BP and WP [OR(AP vs BP) = 1.9, P = 0.038; OR(AP vs WP) = 2.4, P < 0.001]. After RP onset, AP and BP had a higher hazard to die than had WP [hazard ratio (HR) (AP) = 1.6, P = 0.011; HR(BP) = 2.1, P < 0.001].Conclusion. Compared with WP, and mostly independent of geographical location, AP have a faster and earlier disease onset with high prevalences of ATA, pulmonary hypertension and forced vital capacity impairment and higher mortality. BP had the fastest disease onset, a high prevalence of diffuse skin involvement and nominally the highest mortality
Calibration of advanced Virgo and reconstruction of the detector strain h( t) during the observing run O3
The three advanced Virgo and LIGO gravitational wave detectors participated to the third observing run (O3) between 1 April 2019 15:00 UTC and 27 March 2020 17:00 UTC, leading to several gravitational wave detections per month. This paper describes the advanced Virgo detector calibration and the reconstruction of the detector strain h(t) during O3, as well as the estimation of the associated uncertainties. For the first time, the photon calibration technique as been used as reference for Virgo calibration, which allowed to cross-calibrate the strain amplitude of the Virgo and LIGO detectors. The previous reference, so-called free swinging Michelson technique, has still been used but as an independent cross-check. h(t) reconstruction and noise subtraction were processed online, with good enough quality to prevent the need for offline reprocessing, except for the two last weeks of September 2019. The uncertainties for the reconstructed h(t) strain, estimated in this paper in a 20-2000 Hz frequency band, are frequency independent: 5% in amplitude, 35 mrad in phase and 10 μs in timing, with the exception of larger uncertainties around 50 Hz
Advanced Virgo Plus: Future Perspectives
While completing the commissioning phase to prepare the Virgo interferometer for the next joint Observation Run (O4), the Virgo collaboration is also finalizing the design of the next upgrades to the detector to be employed in the following Observation Run (O5). The major upgrade will concern decreasing the thermal noise limit, which will imply using very large test masses and increased laser beam size. But this will not be the only upgrade to be implemented in the break between the O4 and O5 observation runs to increase the Virgo detector strain sensitivity. The paper will cover the challenges linked to this upgrade and implications on the detector's reach and observational potential, reflecting the talk given at 12th Cosmic Ray International Seminar - CRIS 2022 held in September 2022 in Napoli
Virgo Detector Characterization and Data Quality during the O3 run
The Advanced Virgo detector has contributed with its data to the rapid growth
of the number of detected gravitational-wave signals in the past few years,
alongside the two LIGO instruments. First, during the last month of the
Observation Run 2 (O2) in August 2017 (with, most notably, the compact binary
mergers GW170814 and GW170817) and then during the full Observation Run 3 (O3):
an 11 months data taking period, between April 2019 and March 2020, that led to
the addition of about 80 events to the catalog of transient gravitational-wave
sources maintained by LIGO, Virgo and KAGRA. These discoveries and the manifold
exploitation of the detected waveforms require an accurate characterization of
the quality of the data, such as continuous study and monitoring of the
detector noise. These activities, collectively named {\em detector
characterization} or {\em DetChar}, span the whole workflow of the Virgo data,
from the instrument front-end to the final analysis. They are described in
details in the following article, with a focus on the associated tools, the
results achieved by the Virgo DetChar group during the O3 run and the main
prospects for future data-taking periods with an improved detector.Comment: 86 pages, 33 figures. This paper has been divided into two articles
which supercede it and have been posted to arXiv on October 2022. Please use
these new preprints as references: arXiv:2210.15634 (tools and methods) and
arXiv:2210.15633 (results from the O3 run
Virgo Detector Characterization and Data Quality: results from the O3 run
The Advanced Virgo detector has contributed with its data to the rapid growth
of the number of detected gravitational-wave (GW) signals in the past few
years, alongside the two Advanced LIGO instruments. First during the last month
of the Observation Run 2 (O2) in August 2017 (with, most notably, the compact
binary mergers GW170814 and GW170817), and then during the full Observation Run
3 (O3): an 11-months data taking period, between April 2019 and March 2020,
that led to the addition of about 80 events to the catalog of transient GW
sources maintained by LIGO, Virgo and now KAGRA. These discoveries and the
manifold exploitation of the detected waveforms require an accurate
characterization of the quality of the data, such as continuous study and
monitoring of the detector noise sources. These activities, collectively named
{\em detector characterization and data quality} or {\em DetChar}, span the
whole workflow of the Virgo data, from the instrument front-end hardware to the
final analyses. They are described in details in the following article, with a
focus on the results achieved by the Virgo DetChar group during the O3 run.
Concurrently, a companion article describes the tools that have been used by
the Virgo DetChar group to perform this work.Comment: 57 pages, 18 figures. To be submitted to Class. and Quantum Grav.
This is the "Results" part of preprint arXiv:2205.01555 [gr-qc] which has
been split into two companion articles: one about the tools and methods, the
other about the analyses of the O3 Virgo dat
Frequency-Dependent Squeezed Vacuum Source for the Advanced Virgo Gravitational-Wave Detector
In this Letter, we present the design and performance of the frequency-dependent squeezed vacuum source that will be used for the broadband quantum noise reduction of the Advanced Virgo Plus gravitational-wave detector in the upcoming observation run. The frequency-dependent squeezed field is generated by a phase rotation of a frequency-independent squeezed state through a 285 m long, high-finesse, near-detuned optical resonator. With about 8.5 dB of generated squeezing, up to 5.6 dB of quantum noise suppression has been measured at high frequency while close to the filter cavity resonance frequency, the intracavity losses limit this value to about 2 dB. Frequency-dependent squeezing is produced with a rotation frequency stability of about 6 Hz rms, which is maintained over the long term. The achieved results fulfill the frequency dependent squeezed vacuum source requirements for Advanced Virgo Plus. With the current squeezing source, considering also the estimated squeezing degradation induced by the interferometer, we expect a reduction of the quantum shot noise and radiation pressure noise of up to 4.5 dB and 2 dB, respectively
Virgo Detector Characterization and Data Quality: tools
Detector characterization and data quality studies -- collectively referred
to as {\em DetChar} activities in this article -- are paramount to the
scientific exploitation of the joint dataset collected by the LIGO-Virgo-KAGRA
global network of ground-based gravitational-wave (GW) detectors. They take
place during each phase of the operation of the instruments (upgrade, tuning
and optimization, data taking), are required at all steps of the dataflow (from
data acquisition to the final list of GW events) and operate at various
latencies (from near real-time to vet the public alerts to offline analyses).
This work requires a wide set of tools which have been developed over the years
to fulfill the requirements of the various DetChar studies: data access and
bookkeeping; global monitoring of the instruments and of the different steps of
the data processing; studies of the global properties of the noise at the
detector outputs; identification and follow-up of noise peculiar features
(whether they be transient or continuously present in the data); quick
processing of the public alerts. The present article reviews all the tools used
by the Virgo DetChar group during the third LIGO-Virgo Observation Run (O3,
from April 2019 to March 2020), mainly to analyse the Virgo data acquired at
EGO. Concurrently, a companion article focuses on the results achieved by the
DetChar group during the O3 run using these tools.Comment: 44 pages, 16 figures. To be submitted to Class. and Quantum Grav.
This is the "Tools" part of preprint arXiv:2205.01555 [gr-qc] which has been
split into two companion articles: one about the tools and methods, the other
about the analyses of the O3 Virgo dat
- …