23 research outputs found

    Evaluación docente dinámica, mediante gamificación, con una nueva aplicación en cloud de respuesta en el aula para dispositivos móviles con acceso a internet

    Get PDF
    UCMSección Deptal. de Farmacología y Toxicología (Veterinaria)Fac. de VeterinariaFALSEsubmitte

    Guía de laboratorio de Toxicogenómica y Toxicología Molecular

    Get PDF
    Sección Deptal. de Farmacología y Toxicología (Veterinaria)Fac. de Veterinariapu

    Insulin Signaling Disruption and INF-γ Upregulation Induce Aβ1–42 and Hyperphosphorylated-Tau Proteins Synthesis and Cell Death after Paraquat Treatment of Primary Hippocampal Cells

    Get PDF
    Acute and long-term paraquat (PQ) exposure produces hippocampal neurodegeneration and cognition decline. Although some mechanisms involved in these effects were found, the rest are unknown. PQ treatment, for 1 and 14 days, upregulated interferon-gamma signaling, which reduced insulin levels and downregulated the insulin pathway through phosphorylated-c-Jun N-terminal-kinase upregulation, increasing glucose levels and the production of Aβ1–42 and phosphorylated-tau, by beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) overexpression and phosphorylated-GSK3β (p-GSK3β; ser9) level reduction, respectively, which induced primary hippocampal neuronal loss. This novel information on the PQ mechanisms leading to hippocampal neurodegeneration could help reveal the PQ actions that lead to cognition dysfunction

    Neuroprotective mechanisms of multitarget 7-aminophenanthridin-6(5H)-one derivatives against metal-induced amyloid proteins generation and aggregation

    Get PDF
    Brain’s metals accumulation is associated with toxic proteins, like amyloid-proteins (Aβ), formation, accumulation, and aggregation, leading to neurodegeneration. Metals downregulate the correct folding, disaggregation, or degradation mechanisms of toxic proteins, as heat shock proteins (HSPs) and proteasome. The 7-amino-phenanthridin-6(5H)-one derivatives (APH) showed neuroprotective effects against metal-induced cell death through their antioxidant effect, independently of their chelating activity. However, additional neuroprotective mechanisms seem to be involved. We tested the most promising APH compounds (APH1-5, 10–100 μM) chemical ability to prevent metal-induced Aβ proteins aggregation; the APH1-5 effect on HSP70 and proteasome 20S (P20S) expression, the metals effect on Aβ formation and the involvement of HSP70 and P20S in the process, and the APH1-5 neuroprotective effects against Aβ proteins (1 μM) and metals in SN56 cells. Our results show that APH1-5 compounds chemically avoid metal-induced Aβ proteins aggregation and induce HSP70 and P20S expression. Additionally, iron and cadmium induced Aβ proteins formation through downregulation of HSP70 and P20S. Finally, APH1-5 compounds protected against Aβ proteins-induced neuronal cell death, reversing partially or completely this effect. These data may help to provide a new therapeutic approach against the neurotoxic effect induced by metals and other environmental pollutants, especially when mediated by toxic proteins
    corecore