6 research outputs found

    Microwave-assisted autohydrolysis of avocado seed for the recovery of antioxidant phenolics and glucose

    Get PDF
    This study describes the valorization of avocado seed (AS) within a green biorefinery concept using microwave-assisted autohydrolysis. After the treatment at temperatures of 150–230 ◦C for 5 min, the resulting solid and liquor were characterized. The temperature of 220 ◦C led to the simultaneous optimal values of antioxidant phenolics/flavonoids (42.15 mg GAE/g AS, 31.89 RE/g AS, respectively) and glucose + glucooligosaccharides (38.82 g/L) in the liquor. Extraction with ethyl acetate allowed the recovery of the bioactive compounds while maintaining the polysaccharides in the liquor. The extract was rich in vanillin (99.02 mg/g AS) and contained several phenolic acids and flavonoids. The solid phase and the phenolic-free liquor were subjected to enzymatic hydrolysis to produce glucose, reaching values of 9.93 and 105 g glucose/L, respectively. This work demonstrates that microwave-assisted autohydrolysis is a promising technology to obtain fermentable sugars and antioxidant phenolic compounds from avocado seeds following a biorefinery scheme.Universidade de Vigo/CISUGXunta de Galicia | Ref. ED431C 2017/62-GRCXunta de Galicia | Ref. ED431F 2020/03Xunta de Galicia | Ref. ED481B-2022-020Ministerio de Ciencia, Innovación y Universidades | Ref. FPU21/02446Ministerio de Ciencia, Innovación y Universidades | Ref. FJC2021-046978-IMinisterio de Ciencia, Innovación y Universidades | Ref. RYC2018-024846-IMinisterio de Ciencia, Innovación y Universidades | Ref. RYC2018-026177-

    Towards sustainable re-construction systems: from waste ruins to eco-efficient buildings

    No full text
    Building reconstruction projects are mainly motivated by social factors, without a deep evaluation of the Best Available Techniques. The main aim of this work is to analyze the advantages of defining sustainable retrofitted buildings, previously building the edifice, by using methodologies towards sustainable systems. A real re-constructed building is considered as a case study. Three scenarios are investigated to analyze its sustainability, including the waste ruins of the old building (Scenario 1), the current re-constructed building (Scenario 2), and a hypothetical sustainable retrofitted building (Scenario 3). Firstly, the current energy consumption is studied including heating flow through walls (thermal bridges and condensation risk) as well as operational costs. Secondly, a new scenario is proposed adding passive solutions to this existing building, to improve its energy efficiency; also, energy consumption and costs of the refurbishment are analyzed. Results show that Scenario 1 leads to a bad image of a city involving the environment and social fields. Scenario 2 entails expensive operational costs. On the other hand, Scenario 3 results in approximately 90% of cost savings in heating energy demand, which would be traduced on high economic savings. Taken into account not only economic factors but environmental and social ones, it can be concluded that it is more sustainable and profitable constructing an efficient building from the beginning by using waste ruins and simulation software despite refurbishing a re-built edifice

    Hydrothermal treatment of avocado peel waste for the simultaneous recovery of oligosaccharides and antioxidant phenolics

    Get PDF
    Avocado industrial processing generates huge quantities of residues that are currently wasted without any valuable commercial application. This work deals with autohydrolysis of Avocado peel (AP) for the concomitant recovery of oligosaccharides and polyphenolics. Temperature of 150 °C allowed the highest recovery of oligosaccharides (14.3 g oligosaccharides/100 g AP) and high recovery of antioxidant phenolics (3.48 g gallic acid equivalents/100 g AP and 10.80 g Trolox equivalents/100 g AP measured with ABTS●+ assay). The liquor obtained at this temperature was characterized by TGA and FTIR to study its thermal stability and functional groups. UHPLC-TOF MS analysis of an ethyl acetate extract of AP liquor enabled the tentative identification of 43 compounds, belonging to various metabolite families, including flavonoids, phenolic acids, organic acids, lignans and fatty acids. These findings demonstrated that autohydrolysis of AP is a suitable technology to obtain bioactive agents with potential uses in food and cosmetic industries.Financiado para publicación en acceso aberto: Universidade de Vigo/CISUGUniversidade de Vigo | Ref. Open Access publicationCISUG | Ref. Open Access publicationXunta de Galicia | Ref. ED431C 2017/62Xunta de Galicia | Ref. ED431F 2020/03Ministerio de Ciencia, Innovación y Universidades | Ref. RYC2018-024846-IMinisterio de Ciencia, Innovación y Universidades | Ref. RYC2018-026177-

    Valorization of Avocado Seed Wastes for Antioxidant Phenolics and Carbohydrates Recovery Using Deep Eutectic Solvents (DES)

    Get PDF
    Avocado seeds represent the chief waste produced in avocado processing, leading not only to environmental problems regarding its elimination but to a loss of economic profitability. In fact, avocado seeds are known as interesting sources of bioactive compounds and carbohydrates, so their utilization may reduce the negative effect produced during the industrial manufacture of avocado-related products. In this sense, deep eutectic solvents (DES) are a novel greener alternative than organic solvents to extract bioactive polyphenols and carbohydrates. The study was based on a Box–Behnken experimental design to study the effect of three factors, temperature (40, 50, 60 °C), time (60, 120, 180 min) and water content (10, 30, 50% v/v) on the responses of total phenolic (TPC) and flavonoid content (TFC), antioxidant capacity (measured as ABTS and FRAP) and xylose content in the extract. The DES Choline chloride:glycerol (1:1) was used as solvent on avocado seed. Under optimal conditions, TPC: 19.71 mg GAE/g, TFC: 33.41 mg RE/g, ABTS: 20.91 mg TE/g, FRAP: 15.59 mg TE/g and xylose: 5.47 g/L were obtained. The tentative identification of eight phenolic compounds was assayed via HPLC-ESI. The carbohydrate content of the solid residue was also evaluated, and that solid was subjected to two different processing (delignification with DES and microwave-assisted autohydrolysis) to increase the glucan susceptibility to enzymes, and was also assayed reaching almost quantitative glucose yields. These results, added to the non-toxic, eco-friendly, and economic nature of DES, demonstrate that these solvents are an efficient alternative to organic solvents to recover phenolics and carbohydrates from food wastes

    Microwave-assisted autohydrolysis of avocado seed for the recovery of antioxidant phenolics and glucose

    No full text
    This study describes the valorization of avocado seed (AS) within a green biorefinery concept using microwave-assisted autohydrolysis. After the treatment at temperatures of 150–230 °C for 5 min, the resulting solid and liquor were characterized. The temperature of 220 °C led to the simultaneous optimal values of antioxidant phenolics/flavonoids (42.15 mg GAE/g AS, 31.89 RE/g AS, respectively) and glucose + glucooligosaccharides (38.82 g/L) in the liquor. Extraction with ethyl acetate allowed the recovery of the bioactive compounds while maintaining the polysaccharides in the liquor. The extract was rich in vanillin (99.02 mg/g AS) and contained several phenolic acids and flavonoids. The solid phase and the phenolic-free liquor were subjected to enzymatic hydrolysis to produce glucose, reaching values of 9.93 and 105 g glucose/L, respectively. This work demonstrates that microwave-assisted autohydrolysis is a promising technology to obtain fermentable sugars and antioxidant phenolic compounds from avocado seeds following a biorefinery scheme.</p

    Valorization of avocado seed wastes for antioxidant phenolics and carbohydrates recovery using deep eutectic dolvents (DES)

    No full text
    Avocado seeds represent the chief waste produced in avocado processing, leading not only to environmental problems regarding its elimination but to a loss of economic profitability. In fact, avocado seeds are known as interesting sources of bioactive compounds and carbohydrates, so their utilization may reduce the negative effect produced during the industrial manufacture of avocado-related products. In this sense, deep eutectic solvents (DES) are a novel greener alternative than organic solvents to extract bioactive polyphenols and carbohydrates. The study was based on a Box–Behnken experimental design to study the effect of three factors, temperature (40, 50, 60 ◦C), time (60, 120, 180 min) and water content (10, 30, 50% v/v) on the responses of total phenolic (TPC) and flavonoid content (TFC), antioxidant capacity (measured as ABTS and FRAP) and xylose content in the extract. The DES Choline chloride:glycerol (1:1) was used as solvent on avocado seed. Under optimal conditions, TPC: 19.71 mg GAE/g, TFC: 33.41 mg RE/g, ABTS: 20.91 mg TE/g, FRAP: 15.59 mg TE/g and xylose: 5.47 g/L were obtained. The tentative identification of eight phenolic compounds was assayed via HPLC-ESI. The carbohydrate content of the solid residue was also evaluated, and that solid was subjected to two different processing (delignification with DES and microwave-assisted autohydrolysis) to increase the glucan susceptibility to enzymes, and was also assayed reaching almost quantitative glucose yields. These results, added to the non-toxic, eco-friendly, and economic nature of DES, demonstrate that these solvents are an efficient alternative to organic solvents to recover phenolics and carbohydrates from food wastes. </p
    corecore