408 research outputs found

    Deformable 3-D Modelling from Uncalibrated Video Sequences

    Get PDF
    Submitted for the degree of Doctor of Philosophy, Queen Mary, University of Londo

    Manifold Constrained Low-Rank Decomposition

    Full text link
    Low-rank decomposition (LRD) is a state-of-the-art method for visual data reconstruction and modelling. However, it is a very challenging problem when the image data contains significant occlusion, noise, illumination variation, and misalignment from rotation or viewpoint changes. We leverage the specific structure of data in order to improve the performance of LRD when the data are not ideal. To this end, we propose a new framework that embeds manifold priors into LRD. To implement the framework, we design an alternating direction method of multipliers (ADMM) method which efficiently integrates the manifold constraints during the optimization process. The proposed approach is successfully used to calculate low-rank models from face images, hand-written digits and planar surface images. The results show a consistent increase of performance when compared to the state-of-the-art over a wide range of realistic image misalignments and corruptions

    Non-rigid Stereo-motion

    Get PDF

    Human-centric light sensing and estimation from RGBD images: The invisible light switch

    Get PDF
    Lighting design in indoor environments is of primary importance for at least two reasons: 1) people should perceive an adequate light; 2) an effective lighting design means consistent energy saving. We present the Invisible Light Switch (ILS) to address both aspects. ILS dynamically adjusts the room illumination level to save energy while maintaining constant the light level perception of the users. So the energy saving is invisible to them. Our proposed ILS leverages a radiosity model to estimate the light level which is perceived by a person within an indoor environment, taking into account the person position and her/his viewing frustum (head pose). ILS may therefore dim those luminaires, which are not seen by the user, resulting in an effective energy saving, especially in large open offices (where light may otherwise be ON everywhere for a single person). To quantify the system performance, we have collected a new dataset where people wear luxmeter devices while working in office rooms. The luxmeters measure the amount of light (in Lux) reaching the people gaze, which we consider a proxy to their illumination level perception. Our initial results are promising: in a room with 8 LED luminaires, the energy consumption in a day may be reduced from 18585 to 6206 watts with ILS (currently needing 1560 watts for operations). While doing so, the drop in perceived lighting decreases by just 200 lux, a value considered negligible when the original illumination level is above 1200 lux, as is normally the case in offices

    The Visual Social Distancing Problem

    Get PDF
    One of the main and most effective measures to contain the recent viral outbreak is the maintenance of the so-called Social Distancing (SD). To comply with this constraint, workplaces, public institutions, transports and schools will likely adopt restrictions over the minimum inter-personal distance between people. Given this actual scenario, it is crucial to massively measure the compliance to such physical constraint in our life, in order to figure out the reasons of the possible breaks of such distance limitations, and understand if this implies a possible threat given the scene context. All of this, complying with privacy policies and making the measurement acceptable. To this end, we introduce the Visual Social Distancing (VSD) problem, defined as the automatic estimation of the inter-personal distance from an image, and the characterization of the related people aggregations. VSD is pivotal for a non-invasive analysis to whether people comply with the SD restriction, and to provide statistics about the level of safety of specific areas whenever this constraint is violated. We then discuss how VSD relates with previous literature in Social Signal Processing and indicate which existing Computer Vision methods can be used to manage such problem. We conclude with future challenges related to the effectiveness of VSD systems, ethical implications and future application scenarios.Comment: 9 pages, 5 figures. All the authors equally contributed to this manuscript and they are listed by alphabetical order. Under submissio

    MX-LSTM: mixing tracklets and vislets to jointly forecast trajectories and head poses

    Get PDF
    Recent approaches on trajectory forecasting use tracklets to predict the future positions of pedestrians exploiting Long Short Term Memory (LSTM) architectures. This paper shows that adding vislets, that is, short sequences of head pose estimations, allows to increase significantly the trajectory forecasting performance. We then propose to use vislets in a novel framework called MX-LSTM, capturing the interplay between tracklets and vislets thanks to a joint unconstrained optimization of full covariance matrices during the LSTM backpropagation. At the same time, MX-LSTM predicts the future head poses, increasing the standard capabilities of the long-term trajectory forecasting approaches. With standard head pose estimators and an attentional-based social pooling, MX-LSTM scores the new trajectory forecasting state-of-the-art in all the considered datasets (Zara01, Zara02, UCY, and TownCentre) with a dramatic margin when the pedestrians slow down, a case where most of the forecasting approaches struggle to provide an accurate solution.Comment: 10 pages, 3 figures to appear in CVPR 201

    Data augmentation for NeRF: a geometric consistent solution based on view morphing

    Full text link
    NeRF aims to learn a continuous neural scene representation by using a finite set of input images taken from different viewpoints. The fewer the number of viewpoints, the higher the likelihood of overfitting on them. This paper mitigates such limitation by presenting a novel data augmentation approach to generate geometrically consistent image transitions between viewpoints using view morphing. View morphing is a highly versatile technique that does not requires any prior knowledge about the 3D scene because it is based on general principles of projective geometry. A key novelty of our method is to use the very same depths predicted by NeRF to generate the image transitions that are then added to NeRF training. We experimentally show that this procedure enables NeRF to improve the quality of its synthesised novel views in the case of datasets with few training viewpoints. We improve PSNR up to 1.8dB and 10.5dB when eight and four views are used for training, respectively. To the best of our knowledge, this is the first data augmentation strategy for NeRF that explicitly synthesises additional new input images to improve the model generalisation
    • …
    corecore