90,312 research outputs found

    Reconstruction of the Extended Gauge Structure from Z′Z' Observables at Future Colliders

    Full text link
    The discovery of a new neutral gauge boson Z′Z' with a mass in the TeV region would allow for determination of gauge couplings of the Z′Z' to ordinary quarks and leptons in a model independent way. We show that these couplings in turn would allow us to determine the nature of the extended gauge structure. As a prime example we study the E6E_6 group. In this case two discrete constraints on experimentally determined couplings have to be satisfied. If so, the couplings would then uniquely determine the two parameters, tan⁡β\tan \beta and δ\delta, which fully specify the nature of the Z′Z' within E6E_6. If the Z′Z' is part of the E6E_6 gauge structure, then for MZ′=1M_{Z'}=1 TeV tan⁡β\tan \beta and δ\delta could be determined to around 10%10\% at the future colliders. The NLC provides a unique determination of the two constraints as well as of tan⁡β\tan \beta and δ\delta, though with slightly larger error bars than at the LHC. On the other hand, since the LHC primarily determines three out of four normalized couplings, it provides weaker constraints for the underlying gauge structure.Comment: 14 pages LaTeX using RevTeX and psfig.sty. TeX source and 3 PS figures, tarred, compressed and uuencoded; also available via anonymous ftp to ftp://dept.physics.upenn.edu/pub/Cvetic/UPR-636-T

    On the Average Comoving Number Density of Halos

    Full text link
    I compare the numerical multiplicity function given in Yahagi, Nagashima & Yoshii (2004) with the theoretical multiplicity function obtained by means of the excursion set model and an improved version of the barrier shape obtained in Del Popolo & Gambera (1998), which implicitly takes account of total angular momentum acquired by the proto-structure during evolution and of a non-zero cosmological constant. I show that the multiplicity function obtained in the present paper, is in better agreement with Yahagi, Nagashima & Yoshii (2004) simulations than other previous models (Sheth & Tormen 1999; Sheth, Mo & Tormen 2001; Sheth & Tormen 2002; Jenkins et al. 2001) and that differently from some previous multiplicity function models (Jenkins et al. 2001; Yahagi, Nagashima & Yoshii 2004) it was obtained from a sound theoretical background

    Modelling ion populations in astrophysical plasmas: carbon in the solar transition region

    Full text link
    The aim of this work is to improve the modelling of ion populations in higher density, lower temperature astrophysical plasmas, of the type commonly found in lower solar and stellar atmospheres. Ion population models for these regions frequently employ the coronal approximation, which assumes conditions more suitable to the upper solar atmosphere, where high temperatures and lower densities prevail. Using the coronal approximation for modelling the solar transition region gives theoretical lines intensities for the Li-like and Na-like isoelectronic sequences which can be factors of 2-5 times lower than observed. The works of Burgess & Summers (1969) and Nussbaumer & Storey (1975) showed the important part ions in excited levels play when included in the modelling. Their models, however, used approximations for the atomic rates to determine the ion balance. Presented here is the first stage in updating these earlier models of carbon by using rates from up-to-date atomic calculations and more recent photo-ionising radiances for the quiet Sun. Where such atomic rates are not readily available, in the case of electron-impact direct ionisation and excitation--auto-ionisation, new calculations have been made and compared to theoretical and experimental studies. The effects each atomic process has on the ion populations as density changes is demonstrated, and final results from the modelling are compared to the earlier works. Lastly, the new results for ion populations are used to predict line intensities for the solar transition region in the quiet Sun, and these are compared with predictions from coronal-approximation modelling and with observations. Significant improvements in the predicted line intensities are seen in comparison to those obtained from zero-density modelling of carbon.Comment: Draft accepted by A&A, 13 pages, 15 figure

    Incoherent Mollow triplet

    Full text link
    A counterpart of the Mollow triplet (luminescence lineshape of a two-level system under coherent excitation) is obtained for the case of incoherent excitation in a cavity. Its analytical expression, in excellent agreement with numerical results, pinpoints analogies and differences between the conventional resonance fluorescence spectrum and its cavity QED analogue under incoherent excitation.Comment: 4 pages, 3 figure

    Impact of extra particles on indirect Z' limits

    Full text link
    We study the possibility of relaxing the indirect limits on extra neutral vector bosons by their interplay with additional new particles. They can be systematically weakened, even below present direct bounds at colliders, by the addition of more vector bosons and/or scalars designed for this purpose. Otherwise, they appear to be robust.Comment: Latex 23 pages, 8 eps figures. Minor changes, version published in Phys. Rev.
    • …
    corecore