7 research outputs found

    In vitro activity of cefpodoxime against Russian clinical isolates of Haemophilus influenzae, Streptococcus pneumoniae and Streptococcus pyogenes

    Get PDF
    Objective. To determine in vitro activity of oral III generation cephalosporin cefpodoxime against clinical isolates of Haemophilus influenzae, Streptococcus pneumoniae and Streptococcus pyogenes isolated from patients with community-acquired respiratory tract infections in different regions of the Russian Federation. Materials and Methods. The study included isolates of bacterial pathogens of community-acquired respiratory tract infections isolated from outpatients and hospitalized patients in different regions of the Russian Federation. A total of 558 isolates were included in the study, including 184 isolates of H. influenzae, 186 isolates of S. pneumoniae and 188 isolates of S. pyogenes. Species identification was performed using the MALDI-TOF mass spectrometry (Bruker Daltonics, Germany), for S. pneumoniae identification was also performed taking into account the morphology of colonies on blood agar, the presence of Ξ±-hemolysis, negative catalase reaction, sensitivity to optochin and positive results of latex-agglutination using DrySpot kit (OXOID, UK). Antimicrobial susceptibility to cefpodoxime and comparative antimicrobials was determined using broth microdilution method; interpretation of susceptibility testing results was performed in accordance with the recommendations of EUCAST, v.13.0. Data analysis and visualization were performed using the online platform AMRcloud. Results. Despite the generally low incidence of antibiotic resistance in the tested H. influenzae isolates, cefpodoxime, to which all tested isolates were susceptible, was superior to all other oral antibiotics in terms of in vitro activity: aminophenocillins (R – 8.7%), amoxicillin/clavulanate (R – 1.1%), co-trimoxazole (R – 31.5%), levofloxacin (R – 3.8%), moxifloxacin (R – 3.8%), tetracycline (R – 11%), cefixime (R – 2.2%), ceftibuten (R – 3.3%). Among the studied S. pneumoniae isolates, 81.7% were susceptible to cefpodoxime. All isolates resistant to penicillin, amoxicillin and ceftriaxone were also resistant to cefpodoxime. Cefpodoxime was inferior to levofloxacin (R – 0%), moxifloxacin (R – 0%), linezolid (R – 0%), vancomycin (R – 0%), ertapenem (R – 8.6%), ceftaroline (R – 2.3%), and chloramphenicol (R – 3.2%) in terms of in vitro activity against S. pneumoniae. However, all these drugs are either not available in oral form or have a less favorable safety profile compared to cefpodoxime. When compared with other III generation oral cephalosporins cefixime and ceftibuten, the activity of cefpodoxime against S. pneumoniae was significantly higher based on MIC50/90 values (cefixime – 0.125/8 mg/l, ceftibuten – 2/β‰₯ 128 mg/l, cefpodoxime – 0.06/4 mg/l) and MICs range (cefixime – 0.06/β‰₯ 128 mg/l, ceftibuten – 0.06/β‰₯ 128 mg/l, cefpodoxime – 0.03/32 mg/l). No strains resistant to Ξ²-lactam antibiotics were detected among the tested S. pyogenes isolates. Based on the MIC50/90 values and the range of MIC values, the in vitro activity of cefpodoxime was higher than that of ceftibuten and comparable to that of cefixime. Conclusions. According to the results of our study, as well as in view of its pharmacokinetic profile, high safety and compliance, cefpodoxime can be considered as one of the options for oral therapy of community-acquired bacterial upper and lower respiratory tract infections

    In vitro activity of thiamphenicol against Haemophilus influenzae, Streptococcus pneumoniae and Streptococcus pyogenes clinical isolates

    Get PDF
    Objective. To determine in vitro activity of thiamphenicol and other clinically available antimicrobials against clinical isolates of Haemophilus influenzae, Streptococcus pneumoniae and Streptococcus pyogenes. Materials and Methods. We included in the study 875 clinical isolates from 20 Russian cities during 2018–2019. Among tested strains, 126 were H. influenzae, 389 – S. pneumoniae, 360 – S. pyogenes. Antimicrobial susceptibility testing was performed using broth microdilution method according to ISO 20776-1:2006. AST results were interpreted according to EUCAST v.11.0 clinical breakpoints. Results. The minimum inhibitory concentrations (MICs) of thiamphenicol did not exceed 2 mg/L for 94.4% of H. influenzae strains (MIC50 and MIC90 were 0.5 and 1 mg/L, respectively). Thiamphenicol was active against 76.9% of ampicillin-resistant H. influenzae strains (MIC of thiamphenicol 0.06 mg/L) did not exceed 2 mg/L. A total of 88.1% of S. pneumoniae strains resistant to erythromycin were highly susceptible to thiamphenicol (MIC < 2 mg/L). The MIC of thiamphenicol did not exceed 8 mg/L for 96.1% of S. pyogenes strains (MIC50 and MIC90 were 2 and 4 mg/L, respectively). Conclusions. Thiamphenicol was characterized by relatively high in vitro activity, comparable to that of chloramphenicol, against tested strains of H. influenzae, S. pneumoniae and S. pyogenes, including S. pneumoniae isolates with reduced susceptibility to penicillin

    Cefpodoxime proxetil – new opportunities in antibacterial therapy of respiratory infections

    Get PDF
    The purpose of the expert council was to determine the place of cefpodoxime in the ABT algorithms for upper and lower respiratory tract infections and to form a consensus position on its use in clinical practice. Based on the available data, the possibility of including cefpodoxime in national guidelines for the treatment of rhinosinusitis, acute tonsillopharyngitis, community-acquired pneumonia (CAP), as well as infectious exacerbations of chronic bronchitis (CB) and chronic obstructive pulmonary disease (COPD) is being considered

    Antimicrobial resistance of clinical isolates of Klebsiella pneumoniae and Escherichia coli in Russian hospitals: results of a multicenter epidemiological study

    No full text
    Objective. To study the prevalence and mechanisms of antibiotic resistance, including carbapenemase production, in clinical isolates of Klebsiella pneumoniae and Escherichia coli isolated in different regions of Russia as part of the sentinel multicenter surveillance study in 2020–2021, and to explore the population structure of K. pneumoniae and the impact of β€œhigh-risk clones” on antibiotic resistance. Materials and Methods. Consecutive, non-duplicate isolates of K. pneumoniae (n = 2503) and E. coli (n = 2055) isolated from various specimens (blood, cerebrospinal fluid, respiratory samples, urine, wound secretions, etc.) of hospitalized patients with clinical signs of infection in 55 hospitals of 29 cities of Russia were studied. Species identification of isolates was performed by matrix-assisted laser desorption/ ionization time-of-flight mass spectrometry (MALDI-TOF MS). Antibiotic susceptibilities were determined by serial broth microdilution or, in the case of fosfomycin, by agar dilution method, and results were interpreted according to EUCAST v13 MIC breakpoints. Carbapenemase production was determined phenotypically by carbapenem inactivation method (CIM), the presence of genes of the most common serine carbapenemases (KPC, OXA-48) and metallo-Ξ²-lactamases (VIM, IMP, NDM) was determined by real-time PCR. K. pneumoniae clinical isolates were genotyped and assigned to the known clonal complexes (CC) and sequence types (ST) using SNP typing and multilocus sequencing typing (MLST) methods. K- and O-serotypes, acquired resistance and virulence genes, and plasmids carrying these genes were characterized using whole-genome sequencing of selected isolates (n = 215). Results. The resistance rates of nosocomial/community-acquired isolates of K. pneumoniae were as follows: amoxicillin-clavulanate – 88.63/57.99%, piperacillin-tazobactam – 82.92/45.49%, cefotaxime – 87.74/56.97%, ceftazidime – 84.76/53.07%, cefepime – 81.43/49.18%, aztreonam – 1.63/53.28%, ceftazidime-avibactam – 30, 88/9.22%, ceftolozan-tazobactam – 70.06/31.35%, ertapenem – 72.10/28.69%, meropenem – 49.60/15.16%, imipenem – 44.54/13.73%, gentamicin – 60.82/30.33%, amikacin – 42.06/17.21%, ciprofloxacin – 85.10/49.39%; trimethoprimsulfamethoxazole – 74.38/48.16%, colistin – 5.96/2.25%. The resistance of nosocomial/outpatient isolates of E. coli were: ampicillin – 84.93/67.67%, amoxicillin-clavulanate – 57.37/39.73%, piperacillin-tazobactam – 19.48/8.70%, cefotaxime – 63.83/34.19%, ceftazidime – 45.32/20.34%, cefepime – 35.95/16.61%, aztreonam – 51.78/26.11%, ceftazidime-avibactam – 5.71/0.80%, ceftolozane-tazobactam – 11, 95/2.22%, ertapenem – 8.18/1.42%, meropenem – 5.17/0.53%, imipenem – 4.95/0.36%, gentamicin – 24.54/13.68%, amikacin – 5.49/1.42%, ciprofloxacin – 54, 14/32.50%, trimethoprim-sulfamethoxazole – 52.21/38.54%, fosfomycin – 2.48/1.43%, colistin – 1.60/1.07%, tigecycline – 6.35/3.11%. The frequency of carbapenemase production among K. pneumoniae nosocomial isolates was 65.32% (OXA-48 – 40.75%, NDM – 30.28%, KPC – 8.74%, OXA-48 + NDM – 10.62%, OXA-48 + KPC – 2.98%, NDM + KPC – 0.45%, OXA-48 + NDM + KPC – 0.20%). More than 70% of nosocomial isolates of K. pneumoniae belonged to only 7 major genetic lineages known as β€œhigh-risk international clones”: CC395 – 37.40%, CC23 – 9.59%, CC307 – 8.64%, CC147 – 7.61%, CC15 – 2.95%, CC258 – 2.92%, and CC11 – 2.41%. The population of community-acquired K. pneumoniae was characterized by significantly greater genetic diversity (Simpson diversity index: D = 0.919; 95% CI: 0.904 to 0.933) compared with the population of nosocomial strains (Simpson diversity index: D = 0.815; 95% CI: 0.802 to 0.827). Strains of the β€œhypervirulent” genetic lineage of K. pneumoniae CC23 were more common in community-acquired infections. Conclusions. The extremely high frequency of resistance to cephalosporins in K. pneumoniae (> 80%) and E. coli (> 60%), as well as the high frequency of combined resistance to aminoglycosides and fluoroquinolones precludes their empirical use for the treatment of serious nosocomial infections caused by these pathogens. K. pneumoniae shows a rapid increase in resistance to carbapenems, mainly due to the spread of carbapenemases of three major groups: OXA-48, NDM and KPC. The overall increase in the frequency of carbapenemase production is accompanied by the growing diversity of carbapenemases, the increasing prevalence of strains producing NDM and KPC enzymes and those co-producing multiple carbapenemases simultaneously. In community-acquired infections, the high prevalence of resistance to cephalosporins in E. coli (> 30%) and K. pneumoniae (> 50%) remains the most important problem

    ΠœΠ΅Ρ‚ΠΎΠ΄ΠΈΡ‡Π΅ΡΠΊΠΈΠ΅ Ρ€Π΅ΠΊΠΎΠΌΠ΅Π½Π΄Π°Ρ†ΠΈΠΈ Российской нСкоммСрчСской общСствСнной ΠΎΡ€Π³Π°Π½ΠΈΠ·Π°Ρ†ΠΈΠΈ "Ассоциация анСстСзиологов-Ρ€Π΅Π°Π½ΠΈΠΌΠ°Ρ‚ΠΎΠ»ΠΎΠ³ΠΎΠ²", ΠœΠ΅ΠΆΡ€Π΅Π³ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ общСствСнной ΠΎΡ€Π³Π°Π½ΠΈΠ·Π°Ρ†ΠΈΠΈ "Альянс клиничСских Ρ…ΠΈΠΌΠΈΠΎΡ‚Π΅Ρ€Π°ΠΏΠ΅Π²Ρ‚ΠΎΠ² ΠΈ ΠΌΠΈΠΊΡ€ΠΎΠ±ΠΈΠΎΠ»ΠΎΠ³ΠΎΠ²", ΠœΠ΅ΠΆΡ€Π΅Π³ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ ассоциации ΠΏΠΎ клиничСской ΠΌΠΈΠΊΡ€ΠΎΠ±ΠΈΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΈ Π°Π½Ρ‚ΠΈΠΌΠΈΠΊΡ€ΠΎΠ±Π½ΠΎΠΉ Ρ…ΠΈΠΌΠΈΠΎΡ‚Π΅Ρ€Π°ΠΏΠΈΠΈ (МАКМАΠ₯), общСствСнной ΠΎΡ€Π³Π°Π½ΠΈΠ·Π°Ρ†ΠΈΠΈ "Российский БСпсис Π€ΠΎΡ€ΡƒΠΌ" "Диагностика ΠΈ антимикробная тСрапия ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΉ, Π²Ρ‹Π·Π²Π°Π½Π½Ρ‹Ρ… полирСзистСнтными ΠΌΠΈΠΊΡ€ΠΎΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠ°ΠΌΠΈ"

    No full text
    Introduction. Strains of microorganisms resistant to antimicrobial agents are commonly found in medical units throughout most regions of the world, including Russia. This leads to lower antimicrobial therapy efficacy when treating nosocomial infections. In this regard, the timely implementation of adequate antibiotic therapy is of great importance. The objective of the guidelines: To provide summarized information on contemporary approaches to microbiological diagnostics and the assessment of results, as well as the principles of rational use of antimicrobial and antifungal agents, including treatment of infections caused by multiple drug-resistant strains of microorganisms. Subjects and methods. These guidelines are based on published data obtained in the course of randomized trials, as well as information presented in the provisions of international guidelines supported by high-level evidence. The guidelines were prepared by a working group of Russian experts with extensive experience in research and practical work in this area. On October 11, 2019, the final version of the guidelines was reviewed and approved at a joint meeting of the working group and representatives of the public organizations which initiated the development of these guidelines (Association of Anesthesiologists-Intensivists, the Interregional Non-Governmental Organization Alliance of Clinical Chemotherapists and Microbiologists, the Interregional Association for Clinical Microbiology and Antimicrobial Chemotherapy (IACMAC), NGO Russian Sepsis Forum). Conclusion. The guidelines reflect an interdisciplinary consensus of approaches to the diagnostics and antibiotic therapy of infections caused by multiresistant microorganisms. The provisions set forth should be used to decide on the strategy of empirical and etiotropic therapy of the most severe infections.Π’Π²Π΅Π΄Π΅Π½ΠΈΠ΅. Π’ Π±ΠΎΠ»ΡŒΡˆΠΈΠ½ΡΡ‚Π²Π΅ Ρ€Π΅Π³ΠΈΠΎΠ½ΠΎΠ² ΠΌΠΈΡ€Π°, Π² Ρ‚ΠΎΠΌ числС ΠΈ Π² России, ΠΏΠΎΠ»ΡƒΡ‡Π°ΡŽΡ‚ ΡˆΠΈΡ€ΠΎΠΊΠΎΠ΅ распространСниС ΡˆΡ‚Π°ΠΌΠΌΡ‹ ΠΌΠΈΠΊΡ€ΠΎΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠΎΠ², Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΡƒΡŽΡ‰ΠΈΠ΅ΡΡ ΡƒΡΡ‚ΠΎΠΉΡ‡ΠΈΠ²ΠΎΡΡ‚ΡŒΡŽ ΠΊ Π±ΠΎΠ»ΡŒΡˆΠΈΠ½ΡΡ‚Π²Ρƒ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΡ‹Ρ… Π² мСдицинских организациях Π°Π½Ρ‚ΠΈΠΌΠΈΠΊΡ€ΠΎΠ±Π½Ρ‹Ρ… ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΎΠ², Ρ‡Ρ‚ΠΎ Π·Π°ΠΊΠΎΠ½ΠΎΠΌΠ΅Ρ€Π½ΠΎ Π²Π΅Π΄Π΅Ρ‚ ΠΊ сниТСнию эффСктивности Π°Π½Ρ‚ΠΈΠΌΠΈΠΊΡ€ΠΎΠ±Π½ΠΎΠΉ Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ ΠΏΡ€ΠΈ Π»Π΅Ρ‡Π΅Π½ΠΈΠΈ Π½ΠΎΠ·ΠΎΠΊΠΎΠΌΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΉ. Π’ этой связи своСврСмСнноС Π½Π°Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Π°Π΄Π΅ΠΊΠ²Π°Ρ‚Π½ΠΎΠΉ Π°Π½Ρ‚ΠΈΠ±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ ΠΏΡ€ΠΈΠΎΠ±Ρ€Π΅Ρ‚Π°Π΅Ρ‚ ΠΎΡ‡Π΅Π½ΡŒ большоС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅. ЦСль Ρ€Π΅ΠΊΠΎΠΌΠ΅Π½Π΄Π°Ρ†ΠΈΠΉ: ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ Π² ΠΎΠ±ΠΎΠ±Ρ‰Π΅Π½Π½ΠΎΠΌ Π²ΠΈΠ΄Π΅ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΡŽ ΠΎ соврСмСнных ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Π°Ρ… ΠΊ микробиологичСской диагностикС ΠΈ ΠΎΡ†Π΅Π½ΠΊΠ΅ Π΅Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ², Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΎ ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏΠ°Ρ… Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ использования Π°Π½Ρ‚ΠΈΠΌΠΈΠΊΡ€ΠΎΠ±Π½Ρ‹Ρ… ΠΈ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠ³Ρ€ΠΈΠ±ΠΊΠΎΠ²Ρ‹Ρ… ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΎΠ², Π² Ρ‚ΠΎΠΌ числС ΠΏΡ€ΠΈ инфСкциях, Π²Ρ‹Π·Π²Π°Π½Π½Ρ‹Ρ… полирСзистСнтными ΡˆΡ‚Π°ΠΌΠΌΠ°ΠΌΠΈ ΠΌΠΈΠΊΡ€ΠΎΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠΎΠ². ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π» ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹. Π’ основу ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½Ρ‹ Π΄Π°Π½Π½Ρ‹Π΅ ΠΈΠ· ΠΏΡƒΠ±Π»ΠΈΠΊΠ°Ρ†ΠΈΠΉ, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Π² Ρ…ΠΎΠ΄Π΅ Ρ€Π°Π½Π΄ΠΎΠΌΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… исслСдований, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΈΠ·Π»ΠΎΠΆΠ΅Π½Π½Ρ‹Π΅ Π² ΠΌΠ΅ΠΆΠ΄ΡƒΠ½Π°Ρ€ΠΎΠ΄Π½Ρ‹Ρ… клиничСских рСкомСндациях Π² Π²ΠΈΠ΄Π΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠΉ, ΠΈΠΌΠ΅ΡŽΡ‰ΠΈΡ… Π²Ρ‹ΡΠΎΠΊΡƒΡŽ ΡΡ‚Π΅ΠΏΠ΅Π½ΡŒ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ. Π Π΅ΠΊΠΎΠΌΠ΅Π½Π΄Π°Ρ†ΠΈΠΈ ΠΏΠΎΠ΄Π³ΠΎΡ‚ΠΎΠ²Π»Π΅Π½Ρ‹ Ρ€Π°Π±ΠΎΡ‡Π΅ΠΉ Π³Ρ€ΡƒΠΏΠΏΠΎΠΉ российских экспСртов, ΠΎΠ±Π»Π°Π΄Π°ΡŽΡ‰ΠΈΡ… большим ΠΎΠΏΡ‹Ρ‚ΠΎΠΌ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΡΠΊΠΎΠΉ ΠΈ практичСской Ρ€Π°Π±ΠΎΡ‚Ρ‹ Π² рассматриваСмой области. ΠžΠΊΠΎΠ½Ρ‡Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ Π²Π°Ρ€ΠΈΠ°Π½Ρ‚ Ρ€Π΅ΠΊΠΎΠΌΠ΅Π½Π΄Π°Ρ†ΠΈΠΉ Π±Ρ‹Π» рассмотрСн ΠΈ ΡƒΡ‚Π²Π΅Ρ€ΠΆΠ΄Π΅Π½ 11.10.2019 Π³. Π½Π° совмСстном засСдании Ρ€Π°Π±ΠΎΡ‡Π΅ΠΉ Π³Ρ€ΡƒΠΏΠΏΡ‹ ΠΈ прСдставитСлСй общСствСнных ΠΎΡ€Π³Π°Π½ΠΈΠ·Π°Ρ†ΠΈΠΉ - ΠΈΠ½ΠΈΡ†ΠΈΠ°Ρ‚ΠΎΡ€ΠΎΠ² Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ ΠœΠ΅Ρ‚ΠΎΠ΄ΠΈΡ‡Π΅ΡΠΊΠΈΡ… Ρ€Π΅ΠΊΠΎΠΌΠ΅Π½Π΄Π°Ρ†ΠΈΠΉ (Российская нСкоммСрчСская общСствСнная организация «Ассоциация анСстСзиологов-Ρ€Π΅Π°Π½ΠΈΠΌΠ°Ρ‚ΠΎΠ»ΠΎΠ³ΠΎΠ²Β», ΠœΠ΅ΠΆΡ€Π΅Π³ΠΈΠΎΠ½Π°Π»ΡŒΠ½Π°Ρ общСствСнная организация «Альянс клиничСских Ρ…ΠΈΠΌΠΈΠΎΡ‚Π΅Ρ€Π°ΠΏΠ΅Π²Ρ‚ΠΎΠ² ΠΈ ΠΌΠΈΠΊΡ€ΠΎΠ±ΠΈΠΎΠ»ΠΎΠ³ΠΎΠ²Β», ΠœΠ΅ΠΆΡ€Π΅Π³ΠΈΠΎΠ½Π°Π»ΡŒΠ½Π°Ρ ассоциация ΠΏΠΎ клиничСской ΠΌΠΈΠΊΡ€ΠΎΠ±ΠΈΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΈ Π°Π½Ρ‚ΠΈΠΌΠΈΠΊΡ€ΠΎΠ±Π½ΠΎΠΉ Ρ…ΠΈΠΌΠΈΠΎΡ‚Π΅Ρ€Π°ΠΏΠΈΠΈ (МАКМАΠ₯), общСствСнная организация «Российский БСпсис Π€ΠΎΡ€ΡƒΠΌΒ»). Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅. Π Π΅ΠΊΠΎΠΌΠ΅Π½Π΄Π°Ρ†ΠΈΠΈ ΠΎΡ‚Ρ€Π°ΠΆΠ°ΡŽΡ‚ мСТдисциплинарноС консСнсусноС ΠΌΠ½Π΅Π½ΠΈΠ΅ ΠΎ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Π°Ρ… ΠΊ диагностикС ΠΈ Π°Π½Ρ‚ΠΈΠ±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΉ, Π²Ρ‹Π·Π²Π°Π½Π½Ρ‹Ρ… полирСзистСнтными ΠΌΠΈΠΊΡ€ΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠ°ΠΌΠΈ. Π˜Π·Π»ΠΎΠΆΠ΅Π½Π½Ρ‹Π΅ Π² Π½ΠΈΡ… полоТСния цСлСсообразно ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ ΠΏΡ€ΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠΈ Ρ‚Π°ΠΊΡ‚ΠΈΠΊΠΈ эмпиричСской ΠΈ этиотропной Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ тяТСлых ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΉ
    corecore