8 research outputs found
Optimally Repeatable Kinetic Model Variant for Myocardial Blood Flow Measurements with 82Rb PET
Purpose. Myocardial blood flow (MBF) quantification with R b 82 positron emission tomography (PET) is gaining clinical adoption, but improvements in precision are desired. This study aims to identify analysis variants producing the most repeatable MBF measures. Methods. 12 volunteers underwent same-day test-retest rest and dipyridamole stress imaging with dynamic R b 82 PET, from which MBF was quantified usin
Clinical comparison of the positron emission tracking (PeTrack) algorithm with the real-time position management system for respiratory gating in cardiac positron emission tomography
Purpose: A data-driven motion tracking system was developed for respiratory gating in positron emission tomography (PET)/computed tomography (CT) studies. The positron emission tracking system (PeTrack) estimates the position of a low-activity fiducial marker placed on the patient during imaging. The aim of this study was to compare the performance of PeTrack against that of the real-time position management (RPM) system as applied to respiratory gating in cardiac PET/CT studies. Methods: The list-mode data of 35 patients that were referred for 82Rb myocardial perfusion studies were retrospectively processed with PeTrack to generate respiratory motion signals and triggers. Fifty acquisitions from the initial cohort, conducted under physiologic rest and stress, were considered for analysis. Respiratory-gated reconstructions were performed using reconstruction software provided by the vendor. The respiratory signals and triggers of the gating systems were compared using quantitative measurements of the respiratory signal correlation, median, and interquartiles range (IQR) of observed respiratory rates and the relative frequencies of respiratory cycle outliers. Quantitative measurements of left-ventricular wall thicknesses and motion due to respiration were also compared. Real-time position management signals were also retrospectively processed using the trigger detection method of PeTrack for a third comparator (“RPMretro”) that allowed direct comparison of the motion tracking quality independently of differences in the trigger detection methods. The comparison of PeTrack to the original RPM data represent a practical comparison of the two systems, whereas that of PeTrack and RPMretro represents an equal comparison of the two. Nongated images were also reconstructed to provide reference left-ventricular wall thicknesses. LV wall thickness and motion measurements were repeated for a subset of cases with motion ≥7 mm as image artifacts were expected to be more severe in these cases. Results: A significant correlation (P < 0.05) was observed between the RPM and PeTrack respiratory signals in 45/50 acquisitions; the mean correlation coefficient was 0.43. Similar results were found between PeTrack and RPMretro. No significant difference was observed between the RPM and PeTrack with respect to median respiratory rates and the percentage of respiratory cycles outliers. Respiratory rate variability (IQR) was significantly higher with PeTrack vs RPM (P = 0.002) and RPMretro (P = 0.04). Both PeTrack and RPM had a significant increase in the percentage of respiratory rate outliers compared to RPMretro (P < 0.001 and P = 0.001, respectively). All methods indicated significant differences in LV thickness compared to nongated images (P < 0.02). LV thickness was si
A minimal factor overlap method for resolving ambiguity in factor analysis of dynamic cardiac PET
Factor analysis has been pursued as a means to decompose dynamic cardiac PET images into different tissue types based on their unique physiology. Each tissue is represented by a time-activity profile (factor) and an associated spatial distribution (structure). Decomposition is based on non-negative constraints of both the factors and structures; however, additional constraints are required to achieve a unique solution. In this work we present a novel method (minimal factor overlap - MFO) and compare its performance to a previously publishe
Kernel-Based Reconstruction of C-11-Hydroxyephedrine Cardiac PET Images of the Sympathetic Nervous System
Image reconstruction for positron emission tomography (PET) can be challenging and the resulting image typically has high noise. The kernel-based reconstruction method [1], incorporates prior anatomic information in the reconstruction algorithm to reduce noise while preserving resolution. Prior information is incorporated in the reconstruction algorithm by means of spatial kernels originally used in machine learning. In this paper, the kernel-based method is used to reconstruct PET images of sympathetic innervation in the heart. The resulting images are compared with standard Ordered Subset Expectation Maximization (OSEM) reconstructed images qualitatively and quantitatively using data from 6 human subjects. The kernel-based method demonstrated superior SNR with preserved contrast and accuracy compared to OSEM
Consistent tracer administration profile improves test–retest repeatability of myocardial blood flow quantification with 82Rb dynamic PET imaging
Objectives: Quantification of myocardial blood flow (MBF) and stress/rest flow reserve is used increasingly to diagnose multi-vessel coronary artery disease and micro-vascular disease with PET imaging. However, variability in the measurements may limit physici
Intra-and inter-operator repeatability of myocardial blood flow and myocardial flow reserve measurements using rubidium-82 pet and a highly automated analysis program
Background: Changes in myocardial blood flow between rest and stress states are commonly used to diagnose coronary artery disease. Relative myocardial perfusion imaging (MPI) is used routinely while myocardial blood flow quantification (MBF) may improve the sensitivity for detection of early disease. The ratio of flow at stress and rest (S/R) and their difference (S-R) have both been proposed as a means to detect regions with reduced myocardial flow reserve (MFR). In this study, we describe a highly automated method to calculate regional and global rest, stress, S/R, and S-R polar maps of the left ventricle myocardium. Methods: We measured the inter-and intra-operator variability using two randomized datasets (n = 30 each) for each of two operators (novice and expert) with correlation and Bland-Altman reproducibility coefficient (RPC%) analyses. Results: S-R MBF had less inter-operator dependent variability than S/R (RPC% = 5.0% vs 12.6%, P <.001). While there was no difference in intra-operator variability with S-R MBF (novice vs expert RPC% = 6.4% vs 5.9%, P = ns), variability was higher in the noviceoperator for S/R (RPC% = 16.8% vs 8.5% respectively, P <.001), suggesting that S-R may be preferred for detecting small changes in MFR. The novice operator's intervention pattern became more similar to that of the expert in the later dataset, emphasizing the need for adequate training and quality assurance. Conclusion: The proposed method results in low operator-dependent variability, suitable for routine use. Copyrigh