1,173 research outputs found

    Coulomb effects in semiconductor quantum dots

    Full text link
    Coulomb correlations in the optical spectra of semiconductor quantum dots are investigated using a full-diagonalization approach. The resulting multi-exciton spectra are discussed in terms of the symmetry of the involved states. Characteristic features of the spectra like the nearly equidistantly spaced s-shell emission lines and the approximately constant p-shell transition energies are explained using simplified Hamiltonians that are derived taking into account the relative importance of various interaction contributions. Comparisons with previous results in the literature and their interpretation are made.Comment: 7 pages, 2 figure

    Evidence for a Positive Cosmological Constant from Flows of Galaxies and Distant Supernovae

    Full text link
    Recent observations of high-redshift supernovae seem to suggest that the global geometry of the Universe may be affected by a `cosmological constant', which acts to accelerate the expansion rate with time. But these data by themselves still permit an open universe of low mass density and no cosmological constant. Here we derive an independent constraint on the lower bound to the mass density, based on deviations of galaxy velocities from a smooth universal expansion. This constraint rules out a low-density open universe with a vanishing cosmological constant, and together the two favour a nearly flat universe in which the contributions from mass density and the cosmological constant are comparable. This type of universe, however, seems to require a degree of fine tuning of the initial conditions that is in apparent conflict with `common wisdom'.Comment: 8 pages, 1 figure. Slightly revised version. Letter to Natur

    Bimodal AGNs in Bimodal Galaxies

    Full text link
    By their star content, the galaxies split out into a red and a blue population; their color index peaked around u-r=2.5 or u-r=1, respectively, quantifies the ratio of the blue stars newly formed from cold galactic gas, to the redder ones left over by past generations. On the other hand, upon accreting substantial gas amounts the central massive black holes energize active galactic nuclei (AGNs); here we investigate whether these show a similar, and possibly related, bimodal partition as for current accretion activity relative to the past. To this aim we use an updated semianalytic model; based on Monte Carlo simulations, this follows with a large statistics the galaxy assemblage, the star generations and the black hole accretions in the cosmological framework over the redshift span from z=10 to z=0. We test our simulations for yielding in close detail the observed split of galaxies into a red, early and a blue, late population. We find that the black hole accretion activities likewise give rise to two source populations: early, bright quasars and later, dimmer AGNs. We predict for their Eddington parameter λE\lambda_E -- the ratio of the current to the past black hole accretions -- a bimodal distribution; the two branches sit now under λE0.01\lambda_E \approx 0.01 (mainly contributed by low-luminosity AGNs) and around λE0.31\lambda_E \approx 0.3-1. These not only mark out the two populations of AGNs, but also will turn out to correlate strongly with the red or blue color of their host galaxies.Comment: 7 pages, accepted for publication in the Astrophysical Journa

    Dependence of the Inner DM Profile on the Halo Mass

    Get PDF
    I compare the density profile of dark matter (DM) halos in cold dark matter (CDM) N-body simulations with 1 Mpc, 32 Mpc, 256 Mpc and 1024 Mpc box sizes. In dimensionless units the simulations differ only for the initial power spectrum of density perturbations. I compare the profiles when the most massive halos are composed of about 10^5 DM particles. The DM density profiles of the halos in the 1 Mpc box show systematically shallower cores with respect to the corresponding halos in the 32 Mpc simulation that have masses, M_{dm}, typical of the Milky Way and are fitted by a NFW profile. The DM density profiles of the halos in the 256 Mpc box are consistent with having steeper cores than the corresponding halos in the 32 Mpc simulation, but higher mass resolution simulations are needed to strengthen this result. Combined, these results indicate that the density profile of DM halos is not universal, presenting shallower cores in dwarf galaxies and steeper cores in clusters. Physically the result sustains the hypothesis that the mass function of the accreting satellites determines the inner slope of the DM profile. In comoving coordinates, r, the profile \rho_{dm} \propto 1/(X^\alpha(1+X)^{3-\alpha}), with X=c_\Delta r/r_\Delta, r_\Delta is the virial radius and \alpha =\alpha(M_{dm}), provides a good fit to all the DM halos from dwarf galaxies to clusters at any redshift with the same concentration parameter c_\Delta ~ 7. The slope, \gamma, of the outer parts of the halo appears to depend on the acceleration of the universe: when the scale parameter is a=(1+z)^{-1} < 1, the slope is \gamma ~ 3 as in the NFW profile, but \gamma ~ 4 at a > 1 when \Omega_\Lambda ~ 1 and the universe is inflating.[abridged]Comment: Accepted for publication in MNRAS. 13 pages, including 11 figures and 2 tables. The revised version has an additional discussion section and work on the velocity dispersion anisotrop

    Cosmological Parameters from Velocities, CMB and Supernovae

    Get PDF
    We compare and combine likelihood functions of the cosmological parameters Omega_m, h and sigma_8, from peculiar velocities, CMB and type Ia supernovae. These three data sets directly probe the mass in the Universe, without the need to relate the galaxy distribution to the underlying mass via a "biasing" relation. We include the recent results from the CMB experiments BOOMERANG and MAXIMA-1. Our analysis assumes a flat Lambda CDM cosmology with a scale-invariant adiabatic initial power spectrum and baryonic fraction as inferred from big-bang nucleosynthesis. We find that all three data sets agree well, overlapping significantly at the 2 sigma level. This therefore justifies a joint analysis, in which we find a joint best fit point and 95 per cent confidence limits of Omega_m=0.28 (0.17,0.39), h=0.74 (0.64,0.86), and sigma_8=1.17 (0.98,1.37). In terms of the natural parameter combinations for these data sigma_8 Omega_m^0.6 = 0.54 (0.40,0.73), Omega_m h = 0.21 (0.16,0.27). Also for the best fit point, Q_rms-ps = 19.7 muK and the age of the universe is 13.2 Gyr.Comment: 8 pages, 5 figures. Submitted to MNRA

    A Local Hubble Bubble from SNe Ia?

    Full text link
    We analyze the monopole in the peculiar velocities of 44 Type Ia supernovae (SNe Ia) to test for a local void. The sample extends from 20 to 300 Mpc/h, with distances, deduced from light-curve shapes, accurate to ~6%. Assuming Omega_m=1 and Omega_lambda=0, the most significant deviation we find from the Hubble law is an outwards flow of (6.6+/-2.2)% inside a sphere of radius 70 Mpc/h as would be produced by a void of ~20% underdensity surrounded by a dense shell. This shell roughly coincides with the local Great Walls. Monte Carlo analyses, using Gaussian errors or bootstrap resampling, show the probability for chance occurrence of this result out of a pure Hubble flow to be ~2%. The monopole could be contaminated by higher moments of the velocity field, especially a quadrupole, which are not properly probed by the current limited sky coverage. The void would be less significant if Omega_m is low and Omega_lambda is high. It would be more significant if one outlier is removed from the sample, or if the size of the void is constrained a-priori. This putative void is not in significant conflict with any of the standard cosmological scenarios. It suggests that the Hubble constant as determined within 70 Mpc/h could be overestimated by ~6% and the local value of Omega may be underestimated by ~20%. While the present evidence for a local void is marginal in this data set, the analysis shows that the accumulation of SNe Ia distances will soon provide useful constraints on elusive and important aspects of regional cosmic dynamics.Comment: 21 pages, 3 figures. Slightly revised version. To appear in ApJ, 503, Aug. 20, 199

    Galactic Wind Signatures around High Redshift Galaxies

    Full text link
    We carry out cosmological chemodynamical simulations with different strengths of supernova (SN) feedback and study how galactic winds from star-forming galaxies affect the features of hydrogen (HI) and metal (CIV and OVI) absorption systems in the intergalactic medium at high redshift. We find that the outflows tend to escape to low density regions, and hardly affect the dense filaments visible in HI absorption. As a result, the strength of HI absorption near galaxies is not reduced by galactic winds, but even slightly increases. We also find that a lack of HI absorption for lines of sight (LOS) close to galaxies, as found by Adelberger et al., can be created by hot gas around the galaxies induced by accretion shock heating. In contrast to HI, metal absorption systems are sensitive to the presence of winds. The models without feedback can produce the strong CIV and OVI absorption lines in LOS within 50 kpc from galaxies, while strong SN feedback is capable of creating strong CIV and OVI lines out to about twice that distance. We also analyze the mean transmissivity of HI, CIV, and OVI within 1 h1^{-1} Mpc from star-forming galaxies. The probability distribution of the transmissivity of HI is independent of the strength of SN feedback, but strong feedback produces LOS with lower transmissivity of metal lines. Additionally, strong feedback can produce strong OVI lines even in cases where HI absorption is weak. We conclude that OVI is probably the best tracer for galactic winds at high redshift.Comment: 16 pages, 16 figures, ApJ in press. Higher resolution version available at http://www.ociw.edu/~dkawata/research/papers.htm

    Large Scale Power Spectrum from Peculiar Velocities Via Likelihood Analysis

    Get PDF
    The power spectrum (PS) of mass density fluctuations, independent of `biasing', is estimated from the Mark III catalog of peculiar velocities using Bayesian statistics. A parametric model is assumed for the PS, and the free parameters are determined by maximizing the probability of the model given the data. The method has been tested using detailed mock catalogs. It has been applied to generalized CDM models with and without COBE normalization. The robust result for all the models is a relatively high PS, with P(k)Ω1.2=(4.8±1.5)×103(Mpc/h)3P(k) \Omega^{1.2} = (4.8 \pm 1.5) \times 10^3 (Mpc/h)^3 at k=0.1h/Mpck=0.1 h/Mpc. An extrapolation to smaller scales using the different CDM models yields σ8Ω0.6=0.88±0.15\sigma_8 \Omega^{0.6} = 0.88 \pm 0.15. The peak is weakly constrained to the range 0.02k0.06h/Mpc0.02 \leq k \leq 0.06 h/Mpc. These results are consistent with a direct computation of the PS (Kolatt & Dekel 1996). When compared to galaxy-density surveys, the implied values for β\beta (Ω0.6/b\equiv \Omega^{0.6}/b) are of order unity to within 25%. The parameters of the COBE-normalized, flat CDM model are confined by a 90% likelihood contour of the sort Ωh50μnν=0.8±0.2\Omega h_{50}^\mu n^\nu = 0.8 \pm 0.2, where μ=1.3\mu = 1.3 and ν=3.4,2.0\nu = 3.4, 2.0 for models with and without tensor fluctuations respectively. For open CDM the powers are μ=0.95\mu = 0.95 and ν=1.4\nu = 1.4 (no tensor fluctuations). A Γ\Gamma-shape model free of COBE normalization yields only a weak constraint: Γ=0.4±0.2\Gamma = 0.4 \pm 0.2.Comment: 19 pages, 8 figures, 2 tables. Accepted for publication in The Astrophysical Journa

    Picosecond Nonlinear Relaxation of Photoinjected Carriers in a Single GaAs/AlGaAs Quantum Dot

    Full text link
    Photoemission from a single self-organized GaAs/AlGaAs quantum dot (QD) is temporally resolved with picosecond time resolution. The emission spectra consisting of the multiexciton structures are observed to depend on the delay time and the excitation intensity. Quantitative agreement is found between the experimental data and the calculation based on a model which characterizes the successive relaxation of multiexcitons. Through the analysis we can determine the carrier relaxation time as a function of population of photoinjected carriers. Enhancement of the intra-dot carrier relaxation is demonstrated to be due to the carrier-carrier scattering inside a single QD.Comment: 4 pages, 4 figures, to be published in Phys. Rev. B, Rapid
    corecore