20 research outputs found

    The Differential Response of Intracellular Water Metabolism Derived from Intrinsic Electrophysiological Information in Morus alba L. and Broussonetia papyrifera (L.) Vent. Subjected to Water Shortage

    No full text
    Plant electrical signals can quickly respond to the shifting environment. Almost all life activities of plants are dependent on water. The measurement of plant electrophysiological indices provides a more convenient method for studying the intracellular water utilization. In this study, Morus alba L. (Morus alba or M. alba) and Broussonetia papyrifera (L.) Vent. (Broussonetia papyrifera or B. papyrifera) were experimental materials, and the parameters were measured in two habitats (waterfront, well-water and arid slopes, deficient-water). The physiological and electrophysiological responses of leaves to different habitats were analyzed. The theoretically intrinsic relationships between the clamping force and leaf impedance (Z), capacitive reactance (Xc), resistance (R), and inductive reactance (Xl) were revealed as 3-parameter exponential decay and linear models based on bioenergetics, respectively. Leaf intrinsic electrophysiological parameters were successfully obtained by using the above-mentioned relationships and were used to manifest metabolic activity in plants. The intracellular water-holding capacity (IWHC), water use efficiency (IWUE), water-holding time (IWHT), and water transfer rate (WTR) of plant leaves were defined based on the intrinsic electrophysiological parameters and were used to reflect the intracellular water metabolism. The correlation between the physiological and electrophysiological parameters of the two plant species in the two habitats was also analyzed. The results showed that Morus alba continuously adapted to the shifting environment, the intracellular water metabolism was insensitive to soil water shortage and was independent from the external physiological state. The intracellular water metabolism in Broussonetia papyrifera was very sensitive to soil water shortage, and both intracellular water metabolism and immediate physiological parameters could characterize the response of Broussonetia papyrifera growth and development to soil water

    The Differential Response of Intracellular Water Metabolism Derived from Intrinsic Electrophysiological Information in <i>Morus alba</i> L. and <i>Broussonetia papyrifera</i> (L.) Vent. Subjected to Water Shortage

    No full text
    Plant electrical signals can quickly respond to the shifting environment. Almost all life activities of plants are dependent on water. The measurement of plant electrophysiological indices provides a more convenient method for studying the intracellular water utilization. In this study, Morus alba L. (Morus alba or M. alba) and Broussonetia papyrifera (L.) Vent. (Broussonetia papyrifera or B. papyrifera) were experimental materials, and the parameters were measured in two habitats (waterfront, well-water and arid slopes, deficient-water). The physiological and electrophysiological responses of leaves to different habitats were analyzed. The theoretically intrinsic relationships between the clamping force and leaf impedance (Z), capacitive reactance (Xc), resistance (R), and inductive reactance (Xl) were revealed as 3-parameter exponential decay and linear models based on bioenergetics, respectively. Leaf intrinsic electrophysiological parameters were successfully obtained by using the above-mentioned relationships and were used to manifest metabolic activity in plants. The intracellular water-holding capacity (IWHC), water use efficiency (IWUE), water-holding time (IWHT), and water transfer rate (WTR) of plant leaves were defined based on the intrinsic electrophysiological parameters and were used to reflect the intracellular water metabolism. The correlation between the physiological and electrophysiological parameters of the two plant species in the two habitats was also analyzed. The results showed that Morus alba continuously adapted to the shifting environment, the intracellular water metabolism was insensitive to soil water shortage and was independent from the external physiological state. The intracellular water metabolism in Broussonetia papyrifera was very sensitive to soil water shortage, and both intracellular water metabolism and immediate physiological parameters could characterize the response of Broussonetia papyrifera growth and development to soil water

    Can Electrophysiological Parameters Substitute for Growth, and Photosynthetic Parameters to Characterize the Response of Mulberry and Paper Mulberry to Drought?

    No full text
    Drought is a key factor restricting plant survival, growth and development. The physiological parameters of plants are commonly used to determine the water status, in order to irrigate appropriately and save water. In this study, mulberry (Morus alba L.) and paper mulberry (Broussonetia papyrifera (L.) Vent.) seedlings were used as experimental materials, and four soil moisture treatments were set up for both plant species: 70–75% (CK: the control group, referred to as T0), 55–60% (T1: mild drought), 40–45% (T2: moderate drought), and 25–30% (T3: severe drought). The growth parameter of the plants was measured every two days from the onset of the treatment, the photosynthetic and electrophysiological parameters of the plants were measured every other week for a total of five times. The physiological responses and electrophysiological traits of leaves under different treatment levels were analyzed. The results showed that the photosynthetic and electrophysiological parameters could characterize the response of mulberry growth and development to soil water, and the growth and electrophysiological parameters could characterize the response of paper mulberry growth and development to soil water. Mild drought had no significant effects on the growth and development of mulberry and paper mulberry

    Effects of NaHSO3 on Cellular Metabolic Energy, Photosynthesis and Growth of Iris pseudacorus L.

    No full text
    According to the law of energy conservation, the energy consumed by plants to resist adversity is equal to the difference between photosynthetic energy and growth energy consumption and cellular metabolic energy in plants. The cellular metabolic energy is calculated based on the electrical signals in plants. This study mainly investigated the effect of NaHSO3 on the growth and energy traits of the aquatic plant Iris pseudacorus L. and explored the effect of NaHSO3 on energy consumption in the process of plant development. In this study, NaHSO3 was used for simulating sulfur pollution in water medium. During the 20-day experiment period, the response of I. pseudocorus to the polluted water sources simulated by adding different concentrations of NaHSO3 (0, 0.5, 2, 4, 10 mmol&middot;L&minus;1) was monitored, and the internal mechanism of the relationship between the forms of energy and the removal of sulfur pollution was analyzed. After the 20-day exposure experiment, the growth and nutrient absorption capacity were significantly inhibited, and this inhibition proved to be concentration-dependent. In addition, high concentrations (4 and 10 mmol&middot;L&minus;1) of NaHSO3 might affect photosynthesis by disrupting cell membrane systems as it may interfere with membrane proteins and lipids and thus alter membrane integrity. Therefore, the cellular metabolic energy was increased and the sulfur absorption by I. pseudocorus was promoted under the low concentration (0.5 mmol/L&minus;1) compared with the control, the role of NaHSO3 in promoting the growth of I. pseudocorus is much greater than its toxic effect under low concentrations. Under the hydroponic culture which contained 0.5 mmol&middot;L&minus;1 of NaHSO3, I. pseudocorus grew well and absorbed more sulfur. The results can be used as a reference for the cultivation of aquatic plants dealing with sulfur pollution, and dilution strategy can be set up to treat water medium that is seriously polluted with sulfur

    Effects of NaHSO<sub>3</sub> on Cellular Metabolic Energy, Photosynthesis and Growth of <i>Iris pseudacorus</i> L.

    No full text
    According to the law of energy conservation, the energy consumed by plants to resist adversity is equal to the difference between photosynthetic energy and growth energy consumption and cellular metabolic energy in plants. The cellular metabolic energy is calculated based on the electrical signals in plants. This study mainly investigated the effect of NaHSO3 on the growth and energy traits of the aquatic plant Iris pseudacorus L. and explored the effect of NaHSO3 on energy consumption in the process of plant development. In this study, NaHSO3 was used for simulating sulfur pollution in water medium. During the 20-day experiment period, the response of I. pseudocorus to the polluted water sources simulated by adding different concentrations of NaHSO3 (0, 0.5, 2, 4, 10 mmol·L−1) was monitored, and the internal mechanism of the relationship between the forms of energy and the removal of sulfur pollution was analyzed. After the 20-day exposure experiment, the growth and nutrient absorption capacity were significantly inhibited, and this inhibition proved to be concentration-dependent. In addition, high concentrations (4 and 10 mmol·L−1) of NaHSO3 might affect photosynthesis by disrupting cell membrane systems as it may interfere with membrane proteins and lipids and thus alter membrane integrity. Therefore, the cellular metabolic energy was increased and the sulfur absorption by I. pseudocorus was promoted under the low concentration (0.5 mmol/L−1) compared with the control, the role of NaHSO3 in promoting the growth of I. pseudocorus is much greater than its toxic effect under low concentrations. Under the hydroponic culture which contained 0.5 mmol·L−1 of NaHSO3, I. pseudocorus grew well and absorbed more sulfur. The results can be used as a reference for the cultivation of aquatic plants dealing with sulfur pollution, and dilution strategy can be set up to treat water medium that is seriously polluted with sulfur

    Photosynthetic response of two okra cultivars under salt stress and re-watering

    No full text
    Two cultivars of okra (Chinese green and Chinese red) were subjected to salt stress (0%, 6%, 12% and 18%) and equal proportions of NaCl and CaCl2 in Hoagland’s nutrient solution and re-watering. Salt stress significantly reduced growth parameters and photosynthetic attributes of both cultivars. Treatment subjected to 18% salt stress caused 90% redundancy in growth parameters of both cultivars compared to control. Re-watering gave a positive response for plant growth of both cultivars in different levels. Chinese green showed better recovery at 6–0% re-watering level and Chinese red showed 12–6% and 6–0%, due to its salt tolerance nature. Considering re-watering water use efficiency and net photosynthetic rate the optimum values of salt tolerance for Chinese green and Chinese red were 8.3% and 12.02%, respectively. The best re-watering degree found as salt stress level ranged from 12.02% to 6% for Chinese red and 8.3% to 2.3% for Chinese green. This study provided a new method for the determination of irrigation time and quantification in crops

    Water Metabolism of <i>Lonicera japonica</i> and <i>Parthenocissus quinquefolia</i> in Response to Heterogeneous Simulated Rock Outcrop Habitats

    No full text
    The karst carbon sink caused by rock outcrops results in enrichment of the bicarbonate in soil, affecting the physiological process of plants in an all-round way. Water is the basis of plant growth and metabolic activities. In heterogeneous rock outcrop habitats, the impact of bicarbonate enrichment on the intracellular water metabolism of plant leaf is still unclear, which needs to be revealed. In this paper, the Lonicera japonica and Parthenocissus quinquefolia plants were selected as experimental materials, and electrophysiological indices were used to study their water holding, transfer and use efficiency under three simulated rock outcrop habitats, i.e., rock/soil ratio as 1, 1/4 and 0. By synchronously determining and analyzing the leaf water content, photosynthetic and chlorophyll fluorescence parameters, the response characteristics of water metabolism within leaf cells to the heterogeneous rock outcrop habitats were revealed. The results showed that the soil bicarbonate content in rock outcrop habitats increased with increasing rock/soil ratio. Under the treatment of a higher concentration of bicarbonate, the leaf intra- and intercellular water acquisition and transfer efficiency as well as the photosynthetic utilization capacity of P. quinquefolia decreased, the leaf water content was lower, and those plants had low bicarbonate utilization efficiency, which greatly weakened their drought resistance. However, the Lonicera japonica had a high bicarbonate use capacity when facing the enrichment of bicarbonate within cells, the above-mentioned capacity could significantly improve the water status of the leaves, and the water content and intracellular water-holding capacity of plant leaves in large rock outcrop habitats were significantly better than in non-rock outcrop habitats. In addition, the higher intracellular water-holding capacity was likely to maintain the stability of the intra- and intercellular water environment, thus ensuring the full development of its photosynthetic metabolic capacity, and the stable intracellular water-use efficiency also made itself more vigorous under karstic drought. Taken together, the results suggested that the water metabolic traits of Lonicera japonica made it more adaptable to karst environments

    Drought Induced Dynamic Traits of Soil Water and Inorganic Carbon in Different Karst Habitats

    No full text
    Understanding the temporal variability of soil water and carbon is an important prerequisite for restoring the vegetation in fragile karst ecosystems. A systematic study of soil moisture and carbon storage capacity under drought conditions in different karst habitats is critical for cultivating suitable crops in karst regions. The hydrological characteristics of soil and changes in soil HCO3−, pH, and EC values under drought conditions were measured on simulated rock outcrops and non-outcrops in an indoor pot experiment. The results showed that the rock outcrops had less evaporation and significantly greater water retention capacity than the non-outcrops, which gave the retained water in the rock outcrops sufficient reaction time to dissolve atmospheric CO2, as well as to promote dissolution at the rock–soil interface. Therefore, the carbon sequestration capacity of the rock outcrops was higher than that of the non-outcrops. Due to the rock–soil–water interaction in the early stage of drought, the soil HCO3− concentration in the rock outcrops fluctuated with soil water content, but the soil HCO3− concentration tended to be stable in the whole drought period, showing a phenomenon of zero-carbon sink. No obvious change was observed in the soil HCO3− concentration in non-outcrops during the drought period, which indicated that the carbon sequestration of rock outcrops was mainly attributed to the dissolution of rocks. Therefore, rock outcrops were more effective for water and carbon storage, compared with non-outcrops, under drought, and could provide more available water and carbon resources for supporting the photosynthesis of plants in karst regions

    Salt-induced effects on growth and photosynthetic traits of Orychophragmus violaceus and its restoration through re-watering

    No full text
    Stressful environment such as drought and salinity affects the plant growth and development. This research was conducted to find out growth and photosynthetic threshold values in Orychophragmus violaceus (L.) O. E. Schulz for an appropriate regime to dilute the salted water. O. violaceus was subjected to different treatments of NaCl (NC2.5 : 2.5, NC5 : 5, NC10 : 10) g L-1, Na2SO4 (NS2.5 : 2.5, NS5 : 5, NS10 : 10) g L-1, and mixture of salts (MS1 : 2.5 NaCl + 10 Na2SO4; MS2 : 10 NaCl + 2.5 Na2SO4; MS3 : 5 NaCl + 5 Na2SO4) g L-1 and 0 as control followed by re-watering. Relative performance of stomatal conductivity and photosynthetic activity was found to have significantly affected plant growth under highconcentration salts levels at NC10, NS10, MS1, and MS2, respectively. Growth parameters were stable under slight (NC2.5 and NS2.5) to moderate stress (NC5, NS5, and MS3) conditions due to fact that photosynthetic activities were partially maintained under stimulated carbonic anhydrase activity. Consequently, the increase in net photosynthetic rate was noted under moderate stress condition which was 44.13, 37.07, and 43.01%, respectively. However, O. violaceus was found as salt tolerant up to moderate stress level, and all growth and physiological parameters were recovered during re-watering phases. Relatively, better recovery noticed in net photosynthetic rate under moderate stress levels, and values were 55.62, 65.46, and 50.82%, respectively. Hence, it is suggested that salinity effect in plants could be reduced by re-watering, based on plant physiological characteristics

    Leaf tensity: a method for rapid determination of water requirement information in Brassica napus L.

    No full text
    Water regulation caused by enzymes, such as carbonic anhydrase (CA), changes the water status, making it difficult to diagnose water deficit using leaf water potential (ψL) or stomatal conductance (gs). Therefore, new methods for timely and accurately determining plant water status should be established. In this study, CA activity, ψL, leaf tensity (Td), photosynthetic characteristics and plant growth of Brassica napus L. seedlings under drought and subsequent rewatering were analysed. Results indicated that Td could reflect the plant water status better than ψL or gs and played an important role in the photosynthesis of B. napus. B. napus exhibited good restorability at the 40 g L−1 polyethylene glycol level. The rewatering strategy for B. napus was excellent at 40 g L−1 (−0.15 MPa) →20 g L−1 (−0.11 MPa). Td could be used for the rapid determination of water requirement information in B. napus during winter drought period
    corecore