269 research outputs found
Cytoplasmic Distribution of HIV-1 Tat Sensitizes Jurkat T Cells to Sulphamethoxazole-Hydroxylamine Induced Toxicity
Background: One medication commonly used by HIV-1-infected individuals is the antimicrobial sulphamethoxazole (SMX), which is used in the treatment and prophylaxis of pneumocystis pneumonia. However, SMX is responsible for a very high incidence of hypersensitivity adverse drug reactions (ADRs) in the HIV-1 population. While the pathophysiology of ADRs in general is unknown, sulphamethoxazole-mediated ADRs have been linked to its reactive metabolite sulphamethoxazole-hydroxylamine (SMX-HA). Our previous work has shown that increased expression of the HIV-1 Tat protein in T cells correlated with increased apoptosis after incubation with SMX-HA. In this study we sought to determine the region of the Tat protein responsible for this effect and the mechanism by which Tat contributed to SMX-HA mediated apoptosis.
Methods: We established Jurkat T and Cos 7 cell lines that stably expressed full-length Tat (Tat101) and deletion mutants (Tat86, Tat72, Tat48 and Tat∆). These cell lines were then incubated with SMX-HA and assayed for cell viability and production of reactive oxygen species (ROS). We further used confocal microscopy to assess the intracellular distribution of the Tat proteins and to determine if changes in the expression and/or localization of key cytoskeleton proteins contributed to Tat-mediated apoptosis after SMX-HA treatment.
Results: Deletion of regions of Tat that lead to increased cytoplasmic accumulation significantly contributed to increased cell death in the presence of SMX-HA. The increased cell death did not require induction of ROS. Quantitative analysis also showed that the Tat-expressing cell lines had significantly lower levels of β-actin and α-tubulin present both before and after treatment with SMX-HA. Increased cytoplasmic localization of Tat correlated with greater disturbances in the distribution of actin filaments.
Conclusion: The presence of cytoplasmic Tat in T and epithelial cell lines increases their sensitivity to SMX-HA induced cell death, an effect mediated by the first 48 amino acids of TAT
HIV-1 tat Expression and Sulphamethoxazole Hydroxylamine Mediated Oxidative Stress Alter the Disulfide Proteome in Jurkat T Cells
Background Adverse drug reactions (ADRs) are a significant problem for HIV patients, with the risk of developing ADRs increasing as the infection progresses to AIDS. However, the pathophysiology underlying ADRs remains unknown. Sulphamethoxazole (SMX) via its active metabolite SMX-hydroxlyamine, when used prophylactically for pneumocystis pneumonia in HIV-positive individuals, is responsible for a high incidence of ADRs. We previously demonstrated that the HIV infection and, more specifically, that the HIV-1 Tat protein can exacerbate SMX-HA-mediated ADRs. In the current study, Jurkat T cell lines expressing Tat and its deletion mutants were used to determine the effect of Tat on the thiol proteome in the presence and absence of SMX-HA revealing drug-dependent changes in the disulfide proteome in HIV infected cells. Protein lysates from HIV infected Jurkat T cells and Jurkat T cells stably transfected with HIV Tat and Tat deletion mutants were subjected to quantitative slot blot analysis, western blot analysis and redox 2 dimensional (2D) gel electrophoresis to analyze the effects of SMX-HA on the thiol proteome. Results Redox 2D gel electrophoresis demonstrated that untreated, Tat-expressing cells contain a number of proteins with oxidized thiols. The most prominent of these protein thiols was identified as peroxiredoxin. The untreated, Tat-expressing cell lines had lower levels of peroxiredoxin compared to the parental Jurkat E6.1 T cell line. Conversely, incubation with SMX-HA led to a 2- to 3-fold increase in thiol protein oxidation as well as a significant reduction in the level of peroxiredoxin in all the cell lines, particularly in the Tat-expressing cell lines. Conclusion SMX-HA is an oxidant capable of inducing the oxidation of reactive protein cysteine thiols, the majority of which formed intermolecular protein bonds. The HIV Tat-expressing cell lines showed greater levels of oxidative stress than the Jurkat E6.1 cell line when treated with SMX-HA. Therefore, the combination of HIV Tat and SMX-HA appears to alter the activity of cellular proteins required for redox homeostasis and thereby accentuate the cytopathic effects associated with HIV infection of T cells that sets the stage for the initiation of an ADR
β2 Integrin CD11d/CD18: From Expression to an Emerging Role in Staged Leukocyte Migration
CD11d/CD18 is the most recently discovered and least understood β2 integrin. Known CD11d adhesive mechanisms contribute to both extravasation and mesenchymal migration – two key aspects for localizing peripheral leukocytes to sites of inflammation. Differential expression of CD11d induces differences in monocyte/macrophage mesenchymal migration including impacts on macrophage sub-set migration. The participation of CD11d/CD18 in leukocyte localization during atherosclerosis and following neurotrauma has sparked interest in the development of CD11d-targeted therapeutic agents. Whereas the adhesive properties of CD11d have undergone investigation, the signalling pathways induced by ligand binding remain largely undefined. Underlining each adhesive and signalling function, CD11d is under unique transcriptional control and expressed on a sub-set of predominately tissue-differentiated innate leukocytes. The following review is the first to capture the nearly three decades of CD11d research and discusses the emerging role of CD11d in leukocyte migration and retention during the progression of a staged immune response
CD11d integrin blockade reduces the systemic inflammatory response syndrome after spinal cord injury
Traumatic injury to the spinal cord triggers a systemic inflammatory response syndrome (SIRS), in which inflammatory cells from the circulation invade organs such as the liver, lung and kidney, leading to damage of these organs. Our previous study (Gris, et al, Exp. Neurol, 2008) demonstrated that spinal cord injury (SCI) activates circulating neutrophils that then invade the lung and kidney from 2 to 24. h after injury, increasing myeloperoxidase activity, cyclooxygenase-2 and matrix metalloproteinase-9 expression and lipid peroxidation in these organs. The present study was designed to ascertain whether a treatment that limits the influx of leukocytes into the injured spinal cord would also be effective in reducing the SIRS after SCI. This treatment is intravenous delivery of a monoclonal antibody (mAb) against the CD11d subunit of the CD11d/CD18 integrin expressed by neutrophils and monocytes. We delivered the anti-CD11d mAb at 2. h post moderate clip compression SCI at the 4th or 12th thoracic segments and assessed inflammation, oxidative activity and cellular damage within the lung, kidney and liver at 12. h post-injury. In some analyses we compared high and low thoracic injuries to evaluate the importance of injury level on the intensity of the SIRS. After T4 injury, treatment with the anti-integrin mAb reduced the presence of neutrophils and macrophages in the lung, with associated decreases in expression of NF-κB and oxidative enzymes and in the concentration of free radicals in this organ. The treatment also reduced lipid peroxidation, protein nitration and cell death in the lung. The anti-CD11d treatment also reduced the inflammatory cells within the kidney after T4 injury, as well as the free radical concentration and amount of lipid peroxidation. In the liver, the mAb treatment reduced the influx of neutrophils but most of the other measures examined were unaffected by SCI. The inflammatory responses within the lung and kidney were often greater after T4 than T12 injury. Clinical studies show that SIRS, with its associated organ failure, contributes significantly to the morbidity and mortality of SCI patients. This anti-integrin treatment may block the onset of SIRS after SCI. © 2011 Elsevier Inc
Preconditioning Human Adipose-Derived Stromal Cells on Decellularized Adipose Tissue Scaffolds Within a Perfusion Bioreactor Modulates Cell Phenotype and Promotes a Pro-regenerative Host Response
Cell-based therapies involving the delivery of adipose-derived stromal cells (ASCs) on decellularized adipose tissue (DAT) scaffolds are a promising approach for soft tissue augmentation and reconstruction. Our lab has recently shown that culturing human ASCs on DAT scaffolds within a perfusion bioreactor prior to implantation can enhance their capacity to stimulate in vivo adipose tissue regeneration. Building from this previous work, the current study investigated the effects of bioreactor preconditioning on the ASC phenotype and secretory profile in vitro, as well as host cell recruitment following implantation in an athymic nude mouse model. Immunohistochemical analyses indicated that culturing within the bioreactor increased the percentage of ASCs co-expressing inducible nitric oxide synthase (iNOS) and arginase-1 (Arg-1), as well as tumor necrosis factor-alpha (TNF-α) and interleukin-10 (IL-10), within the peripheral regions of the DAT relative to statically cultured controls. In addition, bioreactor culture altered the expression levels of a range of immunomodulatory factors in the ASC-seeded DAT. In vivo testing revealed that culturing the ASCs on the DAT within the perfusion bioreactor prior to implantation enhanced the infiltration of host CD31+ endothelial cells and CD26+ cells into the DAT implants, but did not alter CD45+F4/80+CD68+ macrophage recruitment. However, a higher fraction of the CD45+ cell population expressed the pro-regenerative macrophage marker CD163 in the bioreactor group, which may have contributed to enhanced remodeling of the scaffolds into host-derived adipose tissue. Overall, the findings support that bioreactor preconditioning can augment the capacity of human ASCs to stimulate regeneration through paracrine-mediated mechanisms
CD11d antibody treatment improves recovery in spinal cord-injured mice
Acute administration of a monoclonal antibody (mAb) raised against the CD11d subunit of the leukocyte CD11d/CD18 integrin after spinal cord injury (SCI) in the rat greatly improves neurological outcomes. This has been chiefly attributed to the reduced infiltration of neutrophils into the injured spinal cord in treated rats. More recently, treating spinal cord-injured mice with a Ly-6G neutrophil-depleting antibody was demonstrated to impair neurological recovery. These disparate results could be due to different mechanisms of action utilized by the two antibodies, or due to differences in the inflammatory responses between mouse and rat that are triggered by SCI. To address whether the anti-CD11d treatment would be effective in mice, a CD11d mAb (205C) or a control mAb (1B7) was administered intravenously at 2, 24, and 48 h after an 8-g clip compression injury at the fourth thoracic spinal segment. The anti-CD11d treatment reduced neutrophil infiltration into the injured mouse spinal cord and was associated with increased white matter sparing and reductions in myeloperoxidase (MPO) activity, reactive oxygen species, lipid peroxidation, and scar formation. These improvements in the injured spinal cord microenvironment were accompanied by increased serotonin (5-HT) immunoreactivity below the level of the lesion and improved locomotor recovery. Our results with the 205C CD11d mAb treatment complement previous work using this anti-integrin treatment in a rat model of SCI. © 2012, Mary Ann Liebert, Inc
Differential detection and distribution of microglial and hematogenous macrophage populations in the injured spinal cord of lys-EGFP-ki transgenic mice
The acute inflammatory response that follows spinal cord injury (SCI) contributes to secondary injury that results in the expansion of the lesion and further loss of neurologic function. A cascade of receptor-mediated signaling events after SCI leads to activation of innate immune responses including the migration of microglia and active recruitment of circulating leukocytes. Because conventional techniques do not always distinguish macrophages derived from CNS-resident microglia from blood-derived monocytes, the role that each macrophage type performs cannot be assessed unambiguously in these processes. We demonstrate that, in the normal and spinal cord-injured lys-EGFP-ki transgenic mouse, enhanced green fluorescent protein (EGFP) is expressed only in mature hematopoietic granulomyelomonocytic cells and not in microglia. This allowed us to assess the temporal and spatial relationships between microglia-derived and hematogenous macrophages as well as neutrophils during a period of 6 weeks after clip compression SCI. Within the lesion, EGFP-positive monocyte-derived macrophages were found at the epicenter surrounded by EGFP-negative-activated microglia and microglia-derived macrophages. Neutrophils were not present when EGFP-positive monocyte-derived macrophages were depleted, indicating that neutrophil persistence in the lesion depended on the presence of these monocytes. Thus, these 2 distinct macrophage populations can be independently identified and tracked, thereby allowing their roles in acute and chronic stages of SCI-associated inflammation to be defined. Copyright © 2012 by the American Association of Neuropathologists, Inc
CD11d integrin blockade reduces the systemic inflammatory response syndrome after traumatic brain injury in rats
Traumatic CNS injury triggers a systemic inflammatory response syndrome (SIRS), in which circulating inflammatory cells invade body organs causing local inflammation and tissue damage. We have shown that the SIRS caused by spinal cord injury is greatly reduced by acute intravenous treatment with an antibody against the CD11d subunit of the CD11d/CD18 integrin expressed by neutrophils and monocyte/macrophages, a treatment that reduces their efflux from the circulation. Traumatic brain injury (TBI) is a frequently occurring injury after motor vehicle accidents, sporting and military injuries, and falls. Our studies have shown that the anti-CD11d treatment diminishes brain inflammation and oxidative injury after moderate or mild TBI, improving neurological outcomes. Accordingly, we examined the impact of this treatment on the SIRS triggered by TBI. The anti-CD11d treatment was given at 2. h after a single moderate (2.5-3.0. atm) or 2 and 24. h after each of three consecutive mild (1.0-1.5. atm) fluid percussion TBIs. Sham-injured, saline-treated rats served as controls. At 24. h, 72. h, and 4 or 8. weeks after the single TBI and after the third of three TBIs, lungs of rats were examined histochemically, immunocytochemically and biochemically for downstream effects of SIRS including inflammation, tissue damage and expression of oxidative enzymes. Lung sections revealed that both the single moderate and repeated mild TBI caused alveolar disruption, thickening of inter-alveolar tissue, hemorrhage into the parenchyma and increased density of intra-and peri-alveolar macrophages. The anti-CD11d treatment decreased the intrapulmonary influx of neutrophils and the density of activated macrophages and the activity of myeloperoxidase after these TBIs. Moreover, Western blotting studies showed that the treatment decreased lung protein levels of oxidative enzymes gp91phox, inducible nitric oxide synthase and cyclooxygenase-2, as well as the apoptotic pathway enzyme caspase-3 and levels of 4-hydroxynonenal-bound proteins (an indicator of lipid peroxidation). Decreased expression of the cytoprotective transcription factor Nrf2 reflected decreased lung oxidative stress. Anti-CD11d treatment also diminished the lung concentration of free radicals and tissue aldehydes.In conclusion, the substantial lung component of the SIRS after single or repeated TBIs is significantly decreased by a simple, minimally invasive and short-lasting anti-inflammatory treatment
The effectiveness of the anti-CD11d treatment is reduced in rat models of spinal cord injury that produce significant levels of intraspinal hemorrhage
We have previously reported that administration of a CD11d monoclonal antibody (mAb) improves recovery in a clip-compression model of SCI. In this model the CD11d mAb reduces the infiltration of activated leukocytes into the injured spinal cord (as indicated by reduced intraspinal MPO). However not all anti-inflammatory strategies have reported beneficial results, suggesting that success of the CD11d mAb treatment may depend on the type or severity of the injury. We therefore tested the CD11d mAb treatment in a rat hemi-contusion model of cervical SCI. In contrast to its effects in the clip-compression model, the CD11d mAb treatment did not improve forelimb function nor did it significantly reduce MPO levels in the hemi-contused cord. To determine if the disparate results using the CD11d mAb were due to the biomechanical nature of the cord injury (compression SCI versus contusion SCI) or to the spinal level of the injury (12th thoracic level versus cervical) we further evaluated the CD11d mAb treatment after a T12 contusion SCI. In contrast to the T12 clip compression SCI, the CD11d mAb treatment did not improve locomotor recovery or significantly reduce MPO levels after T12 contusion SCI. Lesion analyses revealed increased levels of hemorrhage after contusion SCI compared to clip-compression SCI. SCI that is accompanied by increased intraspinal hemorrhage would be predicted to be refractory to the CD11d mAb therapy as this approach targets leukocyte diapedesis through the intact vasculature. These results suggest that the disparate results of the anti-CD11d treatment in contusion and clip-compression models of SCI are due to the different pathophysiological mechanisms that dominate these two types of spinal cord injuries
Human spinal cord injury causes specific increases in surface expression of beta integrins on leukocytes
Spinal cord injury (SCI) activates circulating leukocytes that migrate into the injured cord and bystander organs using adhesion molecule-mediated mechanisms. These cells cause oxidative damage, resulting in secondary injury to the spinal cord, as well as injury to bystander organs. This study was designed to examine, over a 6-h to 2-week period, changes in adhesion molecule surface expression on human peripheral leukocytes after SCI (9 subjects), using as controls 10 uninjured subjects and 6 general trauma patients (trauma controls, TC). Both the percentage of cells expressing a given adhesion molecule and the average level of its expression was quantified for both circulating neutrophils and monocytes. The percentage of neutrophils and monocytes expressing the selectin CD62L was unchanged in TC and SCI patients after injury compared to uninjured subjects. Concurrently, the amount of surface CD62L on neutrophils was decreased in SCI and TC subjects, and on monocytes after SCI. The percentage of neutrophils expressing α4 decreased in TC, but not in SCI, subjects. Likewise, the percentage of neutrophils and monocytes expressing CD11d decreased markedly in TC subjects, but not after SCI. In contrast, the mean surface expression of α4 and CD11d by neutrophils and monocytes increased after SCI compared with uninjured and TC subjects. The percentage of cells and surface expression of CD11b were similar in neutrophils of all three groups, whereas CD11b surface expression increased after SCI in monocytes. In summary, unlike changes found after general trauma, the proinflammatory stimulation induced by SCI increases the surface expression of adhesion molecules on circulating neutrophils and monocytes before they infiltrate the injured spinal cord and multiple organs of patients. Integrins may be excellent targets for anti-inflammatory treatment after human SCI. © 2011, Mary Ann Liebert, Inc
- …