108 research outputs found
Cotorsion pairs in comma categories
Let A and B be abelian categories with enough projective and injective
objects, and T : A-B a left exact additive functor. Then one has a comma
category (B*T). It is shown that If T : A-B is X-exact, then (*X, X) is a
(hereditary) cotorsion pair in A and (*Y, Y)) is a (hereditary) cotorsion pair
in B if and only if ((*X, Y ), ) is a (hereditary) cotorsion pair in
(B*T) and X and Y are closed under extensions. Furthermore, we characterize
when special preenveloping classes in abelian categories A and B can induce
special preenveloping classes in (B*T).Comment: arXiv admin note: text overlap with arXiv:1911.03345 by other author
High Sensitivity Sol-Gel Silica Coated Optical Fiber Sensor for Detection of Ammonia in Water
A high sensitivity ammonia sensor based on a tapered small core singlemode fiber (SCSMF) structure for measurement of ammonia concentration in water is reported. Two tapered SCSMF fiber structures with different waist diameters of 23 µm and 13.5 µm are fabricated by using a customized microheater brushing technique. The silica based material prepared by the sol-gel method is used as a coating applied to the surface of the tapered fiber structures. To investigate the influence of the coating thickness on the sensitivity to ammonia in water, silica coatings with different thicknesses (2-pass and 8-pass coatings) are deposited on the surface of the fiber sensor with a waist diameter of 23 µm. Experiments demonstrate that the sensor with a thicker (8-pass) silica coating shows better sensitivity of 0.131 nm/ppm to ammonia compared to that of 0.069 nm/ppm for the thinner silica coating (2-pass). To further improve the sensor sensitivity, the taper waist diameter is reduced. For an 8-pass coating (249nm at the taper waist section) applied to a tapered SCSMF structure based fiber sensor with a reduced waist diameter of 13.5 µm. Experimental results show that the sensitivity to ammonia is significantly improved to 2.47nm/ppm. The best measurement resolution for ammonia concentration in water is estimated to be 4 ppb while the response and recovery times are less than 2 and 5 minutes respectively. The proposed sensor also offers good performance in terms of repeatability and good selectivity for sensing ammonia compared to that of other common ions and organic molecules in water
High Sensitivity Sol-Gel Silica Coated Optical Fiber Sensor for Detection of Ammonia in Water
A high sensitivity ammonia sensor based on a tapered small core singlemode fiber (SCSMF) structure for measurement of ammonia concentration in water is reported. Two tapered SCSMF fiber structures with different waist diameters of 23 µm and 13.5 µm are fabricated by using a customized microheater brushing technique. The silica based material prepared by the sol-gel method is used as a coating applied to the surface of the tapered fiber structures. To investigate the influence of the coating thickness on the sensitivity to ammonia in water, silica coatings with different thicknesses (2-pass and 8-pass coatings) are deposited on the surface of the fiber sensor with a waist diameter of 23 µm. Experiments demonstrate that the sensor with a thicker (8-pass) silica coating shows better sensitivity of 0.131 nm/ppm to ammonia compared to that of 0.069 nm/ppm for the thinner silica coating (2-pass). To further improve the sensor sensitivity, the taper waist diameter is reduced. For an 8-pass coating (249nm at the taper waist section) applied to a tapered SCSMF structure based fiber sensor with a reduced waist diameter of 13.5 µm. Experimental results show that the sensitivity to ammonia is significantly improved to 2.47nm/ppm. The best measurement resolution for ammonia concentration in water is estimated to be 4 ppb while the response and recovery times are less than 2 and 5 minutes respectively. The proposed sensor also offers good performance in terms of repeatability and good selectivity for sensing ammonia compared to that of other common ions and organic molecules in water
Investigation of Humidity and Temperature Response of a Silica Gel Coated Microfiber Coupler
The humidity and temperature responses of a microfiber coupler (MFC) coated with silica gel are investigated. Two MFC structures with different waist diameters of 2.5 and 3.5 μm were fabricated by fusing and tapering two single-mode fibers using a microheater brushing technique. The influences of the coating thickness and tapered waist diameter on the sensing performance are analyzed. For the proposed sensor with a waist diameter of 2.5 μm and 8-layers thick coating, the change in the relative humidity (RH) results in an exponential blueshift with a maximum sensitivity of 1.6 nm/% RH in the range from 70 to 86% RH. In response to the temperature change, the sensor's transmission spectrum redshifts in a linear fashion with an average sensitivity of 0.55 nm/°C in the range from 20 to 40 °C. The study is important for the development of the proposed fiber structure as a humidity or temperature sensor
High sensitivity ammonia gas sensor based on a silica gel coated microfiber coupler
In this paper, a high sensitivity ammonia gas sensor is proposed based on a silica gel coated microfiber coupler (MFC). The MFC structure is formed by the two tapered fibers with 3 μm waist diameter each, which were fabricated by using a customized microheater brushing technique. Silica gel coating was prepared by a sol-gel technique and applied on the surface of the MFC as a thin layer. The spectral characteristics of the proposed sensor were studied under various ammonia gas concentrations. The experimental results show that the coating thickness strongly affected the sensitivity of the MFC-based sensor to ammonia gas concentration. For the sensor with a 90 nm silica gel coating thickness, the highest measurement sensitivity is 2.23 nm/ppm for ammonia gas concentration, and the resolution is as good as 5 ppb, while the measured response and recovery times are ~ 50 and 35 seconds, respectively. Finally, it is demonstrated that the proposed sensor offers good repeatability and selectivity to ammonia gas
Construction and Characterization of a Bacterial Artificial Chromosome Library for the Hexaploid Wheat Line 92R137
For map-based cloning of genes conferring important traits in the hexaploid wheat line 92R137, a bacterial artificial chromosome (BAC) library, including two sublibraries, was constructed using the genomic DNA of 92R137 digested with restriction enzymes HindIII and BamHI. The BAC library was composed of total 765,696 clones, of which 390,144 were from the HindIII digestion and 375,552 from the BamHI digestion. Through pulsed-field gel electrophoresis (PFGE) analysis of 453 clones randomly selected from the HindIII sublibrary and 573 clones from the BamHI sublibrary, the average insert sizes were estimated as 129 and 113 kb, respectively. Thus, the HindIII sublibrary was estimated to have a 3.01-fold coverage and the BamHI sublibrary a 2.53-fold coverage based on the estimated hexaploid wheat genome size of 16,700 Mb. The 765,696 clones were arrayed in 1,994 384-well plates. All clones were also arranged into plate pools and further arranged into 5-dimensional (5D) pools. The probability of identifying a clone corresponding to any wheat DNA sequence (such as gene Yr26 for stripe rust resistance) from the library was estimated to be more than 99.6%. Through polymerase chain reaction screening the 5D pools with Xwe173, a marker tightly linked to Yr26, six BAC clones were successfully obtained. These results demonstrate that the BAC library is a valuable genomic resource for positional cloning of Yr26 and other genes of interest
Optimisation du prétraitement de boues par ultrasons à très basses fréquences et sous pression
L'objectif de ce travail est d'optimiser le prétraitement de boues par des ultrasons de puissance (US) à basses fréquences, et en particulier d étudier pour la première fois des améliorations possibles en modifiant la pression hydrostatique, et la fréquence jusqu à l audible. Après un examen préliminaire des conditions du procédé (conditionnement des boues, type de boues, alcalinisation préalable, contrôle de la température), les effets des paramètres ultrasonores (puissance, intensité, énergie spécifique, fréquence) et de la pression hydrostatique ont été spécifiquement étudiés, séparément et simultanément, d abord à température constante (28C), puis sans refroidissement. On a ainsi vérifié que l énergie spécifique joue un rôle clé dans la désintégration des boues sous US (i.e. solubilisation de la matière organique) et que l'élévation de température pendant la sonication adiabatique est bénéfique grâce aux effets combinés d hydrolyse thermique et de cavitation. Pour une énergie spécifique donnée, une faible fréquence (12 kHz contre 20 kHz) et une haute puissance améliorent la solubilisation de la matière organique grâce à une cavitation plus violente, tandis qu on observe un optimum de pression hydrostatique en raison de ses effets opposés sur le seuil et l'intensité de la cavitation. Un résultat important est que la pression optimale dépend de l intensité ultrasonore et du profil de température, mais pas de l énergie spécifique, ni de la fréquence, ni du type de boues. Après avoir fixé les conditions les plus favorables (soit 12 kHz, 360 W, 28 gTS/L et conditions adiabatiques), l optimisation finale a fourni la pression de travail (3,25 bar) et les paramètres du mode séquentiel (US ON/OFF, permettant d éviter de hautes températures qui amortissement l intensité de la cavitation et peuvent endommager le transducteur). Ces conditions ont permis d atteindre un rendement d extraction de la DCO très élevé, mais n améliorent que faiblement le rendement ultérieur de méthanisation.The objective of this work is to optimize high-power low-frequency sonication (US) pretreatment of sludge, and especially to investigate for the first time possible improvements by higher pressure and audible frequency. After a preliminary examination of regular process conditions (sludge conditioning, sludge type, prior alkalization, temperature control, etc), effects of US parameters (power -PUS, intensity -IUS, specific energy input -ES, frequency -FS, etc.) and of hydrostatic pressure (Ph) were specifically looked into, separately and in combination, first under cooling at constant temperature (28C), then under the progressive temperature rise provoked by sonication. First, it was confirmed that specific energy input (ES) plays a key role in sludge US disintegration (i.e. solubilisation of organic matter) and that temperature rise during adiabatic-like sonication is beneficial through additional effects of thermal hydrolysis and cavitation. At a given ES value, low FS (12 kHz vs. 20 kHz) and high PUS enhance soluble chemical oxygen demand (SCOD) due to more violent cavitation, while hydrostatic pressure gives rise to an optimum value due to its opposite effects on cavitation threshold and intensity. One major result is that optimal pressure depends on IUS (P US) as well as temperature profile, but not on ES, FS, nor sludge type. Setting the other parameters at the most favorable conditions expected, i.e. 12 kHz, 360 W , 28 gTS/L, and adiabatic conditions, final optimization was achieved by searching for this pressure optimum and examining sequential procedure to avoid too high temperature dampening cavitation intensity and damaging the transducer. Such conditions with sequential mode and Ph of 3.25 bar being selected succeeded in achieving very high SCOD, but only marginally improved subsequent methanization yield.TOULOUSE-INP (315552154) / SudocSudocFranceF
Highly Sensitive Twist Sensor Based on Partially Silver Coated Hollow Core Fiber Structure
Interferometer based on multiple beam interferences inside a hollow core fiber (HCF) structure (also known as an antiresonant reflecting optical waveguide) has been attracting interest of many researchers due to its periodic transmission spectrum containing high quality factor spectral dips. Functionalized HCF structures have been demonstrated for a wide range of applications in humidity, magnetic field, and biosensing. Here, we report a new application of the HCF-based structure with a partial silver coating layer for sensing of twist. It is configured by a fusion splicing a section of 4.5-mm long HCF between two standard single mode fibers (SMFs), followed by a sputter-coating of a very thin layer of silver on one side of the HCF surface. It is found that the spectral response of the partially silver coated HCF structure is very sensitive to the changes of input light polarization. An increase in sensitivity of the fiber structure to twist after deposition of the silver coating when the twist is applied to both the SMF and HCF sections is demonstrated by comparison with an uncoated HCF fiber structure. Experimental results show that twisting of the HCF section results in much greater changes in a selected dip\u27s strength compared to that in the case of twisting the SMF section of the structure. The proposed HCF fiber sensors with 4.5-nm and 6.7 nm-thick silver layers show the highest sensitivities of 0.647 dB/°and 0.717 dB/° in the twist angles range of up to 10°. To the best of our knowledge, this is the highest twist sensitivity reported for intensity modulation-based fiber sensors. Moreover, the proposed sensor offers excellent measurement repeatability
Analysis of cloud macro-physical characteristics in Xiangyang of Hubei Province based on ceilometer data
In this study, the cloud macro-physical characteristics in Xiangyang of Hubei Province are statistically analyzed from the aspects of cloud occurrence frequency, number of cloud layers, and cloud base height by using the observation data of ceilometer from 2019 to 2021. The results are as follows. (1) The cloud coverage in Xiangyang is relatively high throughout the year, with an average cloud occurrence frequency of 61.3% in the three years. The frequency of cloud occurrence shows a seasonal variation of higher in summer but lower in winter, and a diurnal variation of higher level during nighttime but lower during daytime. (2) The cloud layer is dominated by single-layer clouds (78.3%), especially in winter (80.1%). In the multi-layer cloud system, two-layer clouds account for the largest proportion (18.5%). The occurrence frequency of multi-layer clouds decreases with the increase in the number of cloud layers, and it is usually high in summer but low in winter, which is mainly related to the relatively sufficient water vapor in summer and the strong convection caused by high temperatures. (3) For clouds with a cloud base height below 1.0 km, the occurrence frequency is 26% in January and 40% in July, indicating that the cloud distribution is relatively dispersed in January but relatively concentrated in July. However, for clouds with a cloud base height between 1.0 and 3.5 km, the occurrence frequency is 57% in January and 24% in July, that is, the cloud distribution is relatively concentrated in January, while relatively dispersed in July. (4) Convective precipitation clouds mainly occur from June to August, accounting for 83.3% of all convective precipitation clouds, and the probability of convective precipitation around the evening is the highest. In terms of cloud base height distribution, the average cloud base height of convective precipitation clouds is lower than that of all precipitation clouds, with a large occurrence frequency of low clouds
Highly sensitive twist sensor based on partially silver coated hollow core fiber structure
Interferometer based on multiple beam interferences inside a hollow core fiber (HCF) structure (also known as an anti-resonant reflecting optical waveguide) has been attracting interest of many researchers due to its periodic transmission spectrum containing high quality factor spectral dips. Functionalized HCF structures have been demonstrated for a wide range of applications in humidity, magnetic field and bio-sensing. Here, we report a new application of the HCF based structure with a partial silver coating layer for sensing of twist. It is configured by fusion splicing a section of 4.5-mm long HCF between two standard single mode fibers (SMFs), followed by a sputter-coating of a very thin layer of silver on one side of the HCF surface. It is found that the spectral response of the partially silver coated HCF structure is very sensitive to the changes of input light polarization. An increase in sensitivity of the fiber structure to twist after deposition of the silver coating when twist is applied to both the SMF and HCF sections is demonstrated by comparison with an uncoated HCF fiber structure. Experimental results show that twisting of the HCF section results in much greater changes in a selected dip’s strength compared to that in the case of twisting the SMF section of the structure. The proposed HCF fiber sensors with 4.5 nm and 6.7 nm-thick silver layers show the highest sensitivities of 0.647 dB/°and 0.717 dB/° in the twist angles range of up to 10°. To the best of our knowledge, this is the highest twist sensitivity reported for intensity modulation based fiber sensors. Moreover, the proposed sensor offers excellent measurement repeatability
- …