91 research outputs found

    Neuroimmune perspectives in sepsis

    Get PDF
    Physiologic anti-inflammatory mechanisms are selected by evolution to control the immune system and to prevent infectious and inflammatory disorders. Central-acting α2-agonists attenuate systemic inflammation and improve survival in experimental sepsis. This anti-inflammatory and therapeutic mechanism of central sympatholytics appears to be mediated by an unexpected vagomimetic potential of the α2-agonists to activate the vagus nerve. Recent studies, however, rule out a cholinergic anti-inflammatory mechanism based on a direct cholinergic interaction between the vagus nerve and the immune system. Since the nervous system is the principal regulator of the immune system, physiologic studies understanding the neuroimmune connections can provide major advantages to design novel therapeutic strategies for sepsis

    Novel Insights for Systemic Inflammation in Sepsis and Hemorrhage

    Get PDF
    The inflammatory responses in sepsis and hemorrhage remain a major cause of death. Clinically, it is generally accepted that shock in sepsis or hemorrhage differs in its mechanisms. However, the recognition of inflammatory cytokines as a common lethal pathway has become consent. Proinflammatory cytokines such as tumor necrosis factor (TNF) or high-mobility group box1 (HMGB1) are fanatically released and cause lethal multiorgan dysfunction. Inhibition of these cytokines can prevent the inflammatory responses and organ damage. In seeking potential anti-inflammatory strategies, we reported that ethyl pyruvate and alpha7 nicotinic acetylcholine receptor (alpha7nAChR) agonists effectively restrained cytokine production to provide therapeutic benefits in both experimental sepsis and hemorrhage. Here, we review the inflammatory responses and the anti-inflammatory strategies in experimental models of sepsis and hemorrhage, as they may have a consistent inflammatory pathway in spite of their different pathophysiological processes

    Augmented erythrocyte band-3 phosphorylation in septic mice

    Get PDF
    AbstractInfection-induced RBC dysfunction has been shown to play a role in the modulation of host response to injury and infection. The underlying biochemical mechanisms are not known. This study investigated alterations in RBC band-3 phosphorylation status and its relationship to anion exchange activity in vitro as well as under in vivo septic conditions induced by cecal ligation and puncture (CLP) in mice. Pervanadate treatment in vitro increased band-3 tyrosine phosphorylation that was accompanied by decreased RBC deformability and anion exchange activity. Following sepsis, band-3 tyrosine phosphorylation in whole RBC ghosts as well as in cytoskeleton-bound or soluble RBC protein fractions were elevated as compared to controls. Although anion exchange activity was similar in RBCs from septic and control animals, band-3 interaction with eosin-5-maleimide (EMA), which binds to band-3 lysine moieties, was increased in cells from septic animals as compared to controls, indicating that sepsis altered band 3 organization within the RBC membrane. Since glucose-6-phosphate dehydrogenase is a major antioxidant enzyme in RBC, in order to assess the potential role of oxidative stress in band-3 tyrosine phosphorylation, sepsis-induced RBC responses were also compared between WT and (G6PD) mutant animals (20% of normal G6PD activity). Band-3 membrane content and EMA staining were elevated in G6PD mutant mice compared to WT under control non-septic conditions. Following sepsis, G6PD mutant animals showed lessened responses in band-3 tyrosine phosphorylation and EMA staining compared to WT. RBC anion exchange activity was similar between mutant and WT animals under all tested conditions. In summary, these studies indicate that sepsis results in elevated band-3 tyrosine phosphorylation and alters band-3 membrane organization without grossly affecting RBC anion exchange activity. The observations also suggest that factors other than oxidative stress are responsible for the sepsis-induced increase in RBC band-3 tyrosine phosphorylation

    Role of A2A adenosine receptors in regulation of opsonized E. coli-induced macrophage function

    Get PDF
    Adenosine is a biologically active molecule that is formed at sites of metabolic stress associated with trauma and inflammation, and its systemic level reaches high concentrations in sepsis. We have recently shown that inactivation of A2A adenosine receptors decreases bacterial burden as well as IL-10, IL-6, and MIP-2 production in mice that were made septic by cecal ligation and puncture (CLP). Macrophages are important in both elimination of pathogens and cytokine production in sepsis. Therefore, in the present study, we questioned whether macrophages are responsible for the decreased bacterial load and cytokine production in A2A receptor-inactivated septic mice. We showed that A2A KO and WT peritoneal macrophages obtained from septic animals were equally effective in phagocytosing opsonized E. coli. IL-10 production induced by opsonized E. coli was decreased in macrophages obtained from septic A2A KO mice as compared to WT counterparts. In contrast, the release of IL-6 and MIP-2 induced by opsonized E. coli was higher in septic A2A KO macrophages than WT macrophages. These results suggest that peritoneal macrophages are not responsible for the decreased bacterial load and diminished MIP-2 and IL-6 production that are observed in septic A2A KO mice. In contrast, peritoneal macrophages may contribute to the suppressive effect of A2A receptor inactivation on IL-10 production during sepsis

    Estrogen Receptor Hormone Agonists Limit Trauma Hemorrhage Shock-Induced Gut and Lung Injury in Rats

    Get PDF
    Acute lung injury (ALI) and the development of the multiple organ dysfunction syndrome (MODS) is a major cause of death in trauma patients. Earlier studies in trauma hemorrhagic shock (T/HS) have documented that splanchnic ischemia leading to gut inflammation and loss of barrier function is an initial triggering event that leads to gut-induced ARDS and MODS. Since sex hormones have been shown to modulate the response to T/HS and proestrous (PE) females are more resistant to T/HS-induced gut and distant organ injury, the goal of our study was to determine the contribution of estrogen receptor (ER)alpha and ERbeta in modulating the protective response of female rats to T/HS-induced gut and lung injury.The incidence of gut and lung injury was assessed in PE and ovariectomized (OVX) female rats subjected to T/HS or trauma sham shock (T/SS) as well as OVX rats that were administered estradiol (E2) or agonists for ERalpha or ERbeta immediately prior to resuscitation. Marked gut and lung injury was observed in OVX rats subjected to T/HS as compared to PE rats or E2-treated OVX rats subjected to T/HS. Both ERalpha and ERbeta agonists were equally effective in limiting T/HS-induced morphologic villous injury and bacterial translocation, whereas the ERbeta agonist was more effective than the ERalpha agonist in limiting T/HS-induced lung injury as determined by histology, Evan's blue lung permeability, bronchoalevolar fluid/plasma protein ratio and myeloperoxidase levels. Similarly, treatment with either E2 or the ERbeta agonist attenuated the induction of the intestinal iNOS response in OVX rats subjected to T/HS whereas the ERalpha agonist was only partially protective.Our study demonstrates that estrogen attenuates T/HS-induced gut and lung injury and that its protective effects are mediated by the activation of ERalpha, ERbeta or both receptors

    Trauma Hemorrhagic Shock-Induced Lung Injury Involves a Gut-Lymph-Induced TLR4 Pathway in Mice

    Get PDF
    Injurious non-microbial factors released from the stressed gut during shocked states contribute to the development of acute lung injury (ALI) and multiple organ dysfunction syndrome (MODS). Since Toll-like receptors (TLR) act as sensors of tissue injury as well as microbial invasion and TLR4 signaling occurs in both sepsis and noninfectious models of ischemia/reperfusion (I/R) injury, we hypothesized that factors in the intestinal mesenteric lymph after trauma hemorrhagic shock (T/HS) mediate gut-induced lung injury via TLR4 activation.The concept that factors in T/HS lymph exiting the gut recreates ALI is evidenced by our findings that the infusion of porcine lymph, collected from animals subjected to global T/HS injury, into naïve wildtype (WT) mice induced lung injury. Using C3H/HeJ mice that harbor a TLR4 mutation, we found that TLR4 activation was necessary for the development of T/HS porcine lymph-induced lung injury as determined by Evan's blue dye (EBD) lung permeability and myeloperoxidase (MPO) levels as well as the induction of the injurious pulmonary iNOS response. TRIF and Myd88 deficiency fully and partially attenuated T/HS lymph-induced increases in lung permeability respectively. Additional studies in TLR2 deficient mice showed that TLR2 activation was not involved in the pathology of T/HS lymph-induced lung injury. Lastly, the lymph samples were devoid of bacteria, endotoxin and bacterial DNA and passage of lymph through an endotoxin removal column did not abrogate the ability of T/HS lymph to cause lung injury in naïve mice.Our findings suggest that non-microbial factors in the intestinal mesenteric lymph after T/HS are capable of recreating T/HS-induced lung injury via TLR4 activation

    CB2 Cannabinoid Receptors Contribute to Bacterial Invasion and Mortality in Polymicrobial Sepsis

    Get PDF
    BACKGROUND:Sepsis is a major healthcare problem and current estimates suggest that the incidence of sepsis is approximately 750,000 annually. Sepsis is caused by an inability of the immune system to eliminate invading pathogens. It was recently proposed that endogenous mediators produced during sepsis can contribute to the immune dysfunction that is observed in sepsis. Endocannabinoids that are produced excessively in sepsis are potential factors leading to immune dysfunction, because they suppress immune cell function by binding to G-protein-coupled CB(2) receptors on immune cells. Here we examined the role of CB(2) receptors in regulating the host's response to sepsis. METHODS AND FINDINGS:The role of CB(2) receptors was studied by subjecting CB(2) receptor wild-type and knockout mice to bacterial sepsis induced by cecal ligation and puncture. We report that CB(2) receptor inactivation by knockout decreases sepsis-induced mortality, and bacterial translocation into the bloodstream of septic animals. Furthermore, CB(2) receptor inactivation decreases kidney and muscle injury, suppresses splenic nuclear factor (NF)-kappaB activation, and diminishes the production of IL-10, IL-6 and MIP-2. Finally, CB(2) receptor deficiency prevents apoptosis in lymphoid organs and augments the number of CD11b(+) and CD19(+) cells during CLP. CONCLUSIONS:Taken together, our results establish for the first time that CB(2) receptors are important contributors to septic immune dysfunction and mortality, indicating that CB(2) receptors may be therapeutically targeted for the benefit of patients suffering from sepsis
    corecore