326 research outputs found

    Simulating non-small cell lung cancer with a multiscale agent-based model

    Get PDF
    Background The epidermal growth factor receptor (EGFR) is frequently overexpressed in many cancers, including non-small cell lung cancer (NSCLC). In silcio modeling is considered to be an increasingly promising tool to add useful insights into the dynamics of the EGFR signal transduction pathway. However, most of the previous modeling work focused on the molecular or the cellular level only, neglecting the crucial feedback between these scales as well as the interaction with the heterogeneous biochemical microenvironment. Results We developed a multiscale model for investigating expansion dynamics of NSCLC within a two-dimensional in silico microenvironment. At the molecular level, a specific EGFR-ERK intracellular signal transduction pathway was implemented. Dynamical alterations of these molecules were used to trigger phenotypic changes at the cellular level. Examining the relationship between extrinsic ligand concentrations, intrinsic molecular profiles and microscopic patterns, the results confirmed that increasing the amount of available growth factor leads to a spatially more aggressive cancer system. Moreover, for the cell closest to nutrient abundance, a phase-transition emerges where a minimal increase in extrinsic ligand abolishes the proliferative phenotype altogether. Conclusions Our in silico results indicate that, in NSCLC, in the presence of a strong extrinsic chemotactic stimulus, and depending on the cell's location, downstream EGFR-ERK signaling may be processed more efficiently, thereby yielding a migration-dominant cell phenotype and overall, an accelerated spatio-temporal expansion rate.Comment: 37 pages, 7 figure

    Does Cancer Growth Depend on Surface Extension?

    Full text link
    We argue that volumetric growth dynamics of a solid cancer depend on the tumor system's overall surface extension. While this at first may seem evident, to our knowledge, so far no theoretical argument has been presented explaining this relationship explicitly. In here, we therefore develop a conceptual framework based on the universal scaling law and then support our conjecture through evaluation with experimental data.Comment: 11 pages, 1 figur

    Simulating Brain Tumor Heterogeneity with a Multiscale Agent-Based Model: Linking Molecular Signatures, Phenotypes and Expansion Rate

    Full text link
    We have extended our previously developed 3D multi-scale agent-based brain tumor model to simulate cancer heterogeneity and to analyze its impact across the scales of interest. While our algorithm continues to employ an epidermal growth factor receptor (EGFR) gene-protein interaction network to determine the cells' phenotype, it now adds an explicit treatment of tumor cell adhesion related to the model's biochemical microenvironment. We simulate a simplified tumor progression pathway that leads to the emergence of five distinct glioma cell clones with different EGFR density and cell 'search precisions'. The in silico results show that microscopic tumor heterogeneity can impact the tumor system's multicellular growth patterns. Our findings further confirm that EGFR density results in the more aggressive clonal populations switching earlier from proliferation-dominated to a more migratory phenotype. Moreover, analyzing the dynamic molecular profile that triggers the phenotypic switch between proliferation and migration, our in silico oncogenomics data display spatial and temporal diversity in documenting the regional impact of tumorigenesis, and thus support the added value of multi-site and repeated assessments in vitro and in vivo. Potential implications from this in silico work for experimental and computational studies are discussed.Comment: 37 pages, 10 figure

    Professional Networks in the Life Sciences: Linking the Linked

    Get PDF
    The world wide web has furthered the emergence of a multitude of online expert communities. Continued progress on many of the remaining complex scientific questions requires a wide ranging expertise spectrum with access to a variety of distinct data types. Moving beyond peer-to-peer to community-to-community interaction is therefore one of the biggest challenges for global interdisciplinary Life Sciences research, including that of cancer. Cross-domain data query, access, and retrieval will be important innovation areas to enable and facilitate this interaction in the coming years
    • …
    corecore