531 research outputs found

    Characteristics of transposable element exonization within human and mouse

    Get PDF
    Insertion of transposed elements within mammalian genes is thought to be an important contributor to mammalian evolution and speciation. Insertion of transposed elements into introns can lead to their activation as alternatively spliced cassette exons, an event called exonization. Elucidation of the evolutionary constraints that have shaped fixation of transposed elements within human and mouse protein coding genes and subsequent exonization is important for understanding of how the exonization process has affected transcriptome and proteome complexities. Here we show that exonization of transposed elements is biased towards the beginning of the coding sequence in both human and mouse genes. Analysis of single nucleotide polymorphisms (SNPs) revealed that exonization of transposed elements can be population-specific, implying that exonizations may enhance divergence and lead to speciation. SNP density analysis revealed differences between Alu and other transposed elements. Finally, we identified cases of primate-specific Alu elements that depend on RNA editing for their exonization. These results shed light on TE fixation and the exonization process within human and mouse genes.Comment: 11 pages, 4 figure

    The Small Satellite-Based, Imaging X-Ray Polarimeter Explorer (IXPE) Mission

    Get PDF
    The Imaging X-ray Polarimeter Explorer (IXPE) focuses on high energy astrophysics in the 2—8 keV x-ray band. IXPE is designed to explore general relativistic and quantum physics effects of gravity, energy, electric and magnetic fields at extreme limits. IXPE, a NASA Small Explorer (SMEX) Mission, will add new dimensions to on-orbit x-ray science: polarization degree, polarization angle and extended object polarization imaging. Polarization uniquely probes physical anisotropies that are not otherwise measurable—ordered magnetic fields, aspheric matter distributions, or general relativistic coupling to black-hole spin. Detailed imaging enables the specific properties of extended x-ray sources to be differentiated. The IXPE Observatory consists of spacecraft and payload modules built up in parallel to form the Observatory during system integration and test. The payload includes three polarization-sensitive, x-ray detector arrays paired with three x-ray mirror module assemblies (MMA). A deployable boom provides the correct separation (focal length) between the detector units and MMAs. Currently, the boom has been delivered, all four detectors units (DU) are complete, the detectors service unit (DSU) is complete, instrument system testing has been completed (DSU with 3 DUs), three of four MMAs is built and all spacecraft components except the solar array have been delivered along with the spacecraft and payload structures. Payload and spacecraft integration and test (I&T) started in March 2020. This paper overviews the flight segment (the Observatory, payload, and spacecraft implementation concepts) with emphasis on the build status and summarizes the launch segment. Launch is planned to occur on a Falcon 9 launch vehicle during Summer 2021. The paper summarizes the impacts of switching from the ‘design-to baseline’ of Pegasus XL to the selected launch vehicle for flight, Falcon 9. COVID-19 impacts to the Project are also summarized. The paper will close with a summary of the mission development status. The Project is firmly into the build phase for both the spacecraft and payload and rapidly approaching Observatory I&T

    Agglomeration, Inequality and Economic Growth (WP)

    Get PDF
    The impact of income inequality on economic growth is dependent on several factors, including the time horizon considered, the initial level of income and its initial distribution. Yet, as growth and inequality are also uneven across space, it is also pertinent to consider the effects of the geographical agglomeration of economic activity. Moreover, it would also seem pertinent to consider not just the levels of inequality and agglomeration, but also the changes they undergo -i.e., their within-country evolution- and how these two processes interact with each other. By applying different econometric specifications and by introducing different measures of agglomeration at country level -specifically, urbanization and urban concentration rates-, this study analyzes how inequality and agglomeration -both their levels and their evolution- influence economic growth in function of the country’s level of development and its initial income distribution. Our results suggest, in line with previous studies, that while high inequality levels are a limiting factor for long-run growth, increasing inequality and increasing agglomeration have the potential to enhance growth in low-income countries where income distribution remains relatively equal, but can result in congestion diseconomies in high-income countries, especially if income distribution becomes particularly unequal

    Effects of L1-ORF2 fragments on green fluorescent protein gene expression

    Get PDF
    The retrotransposon known as long interspersed nuclear element-1 (L1) is 6 kb long, although most L1s in mammalian and other eukaryotic cells are truncated. L1 contains two open reading frames, ORF1 and ORF2, that code for an RNA-binding protein and a protein with endonuclease and reverse transcriptase activities, respectively. In this work, we examined the effects of full length L1-ORF2 and ORF2 fragments on green fluorescent protein gene (GFP) expression when inserted into the pEGFP-C1 vector downstream of GFP. All of the ORF2 fragments in sense orientation inhibited GFP expression more than when in antisense orientation, which suggests that small ORF2 fragments contribute to the distinct inhibitory effects of this ORF on gene expression. These results provide the first evidence that different 280-bp fragments have distinct effects on the termination of gene transcription, and that when inserted in the antisense direction, fragment 280-9 (the 3' end fragment of ORF2) induces premature termination of transcription that is consistent with the effect of ORF2

    Methylation at Global LINE-1 Repeats in Human Blood Are Affected by Gender but Not by Age or Natural Hormone Cycles

    Get PDF
    Previously, we reported on inter-individual and gender specific variations of LINE-1 methylation in healthy individuals. In this study, we investigated whether this variability could be influenced by age or sex hormones in humans. To this end, we studied LINE-1 methylation in vivo in blood-derived DNA from individuals aged 18 to 64 years and from young healthy females at various hormone levels during the menstrual cycle. Our results show that no significant association with age was observed. However, the previously reported increase of LINE-1 methylation in males was reconfirmed. In females, although no correlation between LINE-1 or Alu methylation and hormone levels was observed, a significant stable individual specific level of methylation was noted. In vitro results largely confirmed these findings, as neither estrogen nor dihydrotestosterone affected LINE-1 or Alu methylation in Hek293T, HUVEC, or MDA-kb2 cell lines. In contrast, a decrease in methylation was observed in estrogen-treated T47-Kbluc cell lines strongly expressing estrogen receptor. The very low expression of estrogen receptor in blood cells could explain the observed insensitivity of methylation at LINE-1 to natural hormonal variations in females. In conclusion, neither natural cycle of hormones nor age has a detectable effect on the LINE-1 methylation in peripheral blood cells, while gender remains an important factor

    Resistance of Renal Cell Carcinoma to Sorafenib Is Mediated by Potentially Reversible Gene Expression

    Get PDF
    Purpose: Resistance to antiangiogenic therapy is an important clinical problem. We examined whether resistance occurs at least in part via reversible, physiologic changes in the tumor, or results solely from stable genetic changes in resistant tumor cells. Experimental Design: Mice bearing two human RCC xenografts were treated with sorafenib until they acquired resistance. Resistant 786-O cells were harvested and reimplanted into naïve mice. Mice bearing resistant A498 cells were subjected to a 1 week treatment break. Sorafenib was then again administered to both sets of mice. Tumor growth patterns, gene expression, viability, blood vessel density, and perfusion were serially assessed in treated vs control mice. Results: Despite prior resistance, reimplanted 786-O tumors maintained their ability to stabilize on sorafenib in sequential reimplantation steps. A transcriptome profile of the tumors revealed that the gene expression profile of tumors upon reimplantation reapproximated that of the untreated tumors and was distinct from tumors exhibiting resistance to sorafenib. In A498 tumors, revascularization was noted with resistance and cessation of sorafenib therapy and tumor perfusion was reduced and tumor cell necrosis enhanced with re-exposure to sorafenib. Conclusions: In two RCC cell lines, resistance to sorafenib appears to be reversible. These results support the hypothesis that resistance to VEGF pathway therapy is not solely the result of a permanent genetic change in the tumor or selection of resistant clones, but rather is due to a great extent to reversible changes that likely occur in the tumor and/or its microenvironment
    corecore