118 research outputs found

    Soft Fiber-Reinforced Pneumatic Actuator Design and Fabrication: Towards Robust, Soft Robotic Systems

    Get PDF
    © Springer Nature Switzerland AG 2019. Soft robotics is a rapidly evolving, young research area. So far there are no well-established design standards nor fabrication procedures for soft robots. A number of research groups are working on soft robotics solutions independently and we can observe a range of designs realized in different ways. These soft robots are based on various actuation principles, are driven with various actuation media, and offer various actuation properties. Still, most of them require lots of manual effort and high manual fabrication skills from the person manufacturing these kinds of robots. A significant share of the proposed designs suffers from some imperfections that could be improved by simple design changes. In this work, we propose a number of design and fabrication rules for improving the performance and fabrication complexity of soft fiber-reinforced pneumatic actuators. The proposed design approach focuses on a circular geometry for the pressure chambers and applying a dense, fiber-based reinforcement. Such an approach allows for a more linear actuator response and reduced wear of the actuators, when compared to previous approaches. The proposed manufacturing procedure introduces the application of the reinforcement before the fabrication of the actuator body, significantly reducing the required fabrication effort and providing more consistent and more reliable results

    Direct quantitative identification of the "surface trans-effect"

    Get PDF
    The strong parallels between coordination chemistry and adsorption on metal surfaces, with molecules and ligands forming local bonds to individual atoms within a metal surface, have been established over many years of study. The recently proposed "surface trans-effect" (STE) appears to be a further manifestation of this analogous behaviour, but so far the true nature of the modified molecule-metal surface bonding has been unclear. The STE could play an important role in determining the reactivities of surface-supported metal-organic complexes, influencing the design of systems for future applications. However, the current understanding of this effect is incomplete and lacks reliable structural parameters with which to benchmark theoretical calculations. Using X-ray standing waves, we demonstrate that ligation of ammonia and water to iron phthalocyanine (FePc) on Ag(111) increases the adsorption height of the central Fe atom; dispersion corrected density functional theory calculations accurately model this structural effect. The calculated charge redistribution in the FePc/H2O electronic structure induced by adsorption shows an accumulation of charge along the σ-bonding direction between the surface, the Fe atom and the water molecule, similar to the redistribution caused by ammonia. This apparent σ-donor nature of the observed STE on Ag(111) is shown to involve bonding to the delocalised metal surface electrons rather than local bonding to one or more surface atoms, thus indicating that this is a true surface trans-effect

    Connecting the data landscape of long-term ecological studies: The SPI-Birds data hub

    Get PDF
    The integration and synthesis of the data in different areas of science is drastically slowed and hindered by a lack of standards and networking programmes. Long-term studies of individually marked animals are not an exception. These studies are especially important as instrumental for understanding evolutionary and ecological processes in the wild. Furthermore, their number and global distribution provides a unique opportunity to assess the generality of patterns and to address broad-scale global issues (e.g. climate change). To solve data integration issues and enable a new scale of ecological and evolutionary research based on long-term studies of birds, we have created the SPI-Birds Network and Database (www.spibirds.org)\u2014a large-scale initiative that connects data from, and researchers working on, studies of wild populations of individually recognizable (usually ringed) birds. Within year and a half since the establishment, SPI-Birds has recruited over 120 members, and currently hosts data on almost 1.5 million individual birds collected in 80 populations over 2,000 cumulative years, and counting. SPI-Birds acts as a data hub and a catalogue of studied populations. It prevents data loss, secures easy data finding, use and integration and thus facilitates collaboration and synthesis. We provide community-derived data and meta-data standards and improve data integrity guided by the principles of Findable, Accessible, Interoperable and Reusable (FAIR), and aligned with the existing metadata languages (e.g. ecological meta-data language). The encouraging community involvement stems from SPI-Bird's decentralized approach: research groups retain full control over data use and their way of data management, while SPI-Birds creates tailored pipelines to convert each unique data format into a standard format. We outline the lessons learned, so that other communities (e.g. those working on other taxa) can adapt our successful model. Creating community-specific hubs (such as ours, COMADRE for animal demography, etc.) will aid much-needed large-scale ecological data integration

    Non-destructive testing of welds with the 3MA-analyzer

    No full text
    For the microstructure and stress determination in the surface near region (smaller than 1 mm) micromagnetic non-destructive quantities can be used. This contribution gives an actual survey about the possibilities of determining non-destructively hardness and residual stress values in the weld region. (IZFP
    corecore