143 research outputs found
Flow of Gas Through Turbine Lattices
This report is concerned with fluid mechanics of two-dimensional cascades, particularly turbine cascades. Methods of solving the incompressible ideal flow in cascades are presented. The causes and the order of magnitude of the two-dimensional losses at subsonic velocities are discussed. Methods are presented for estimating the flow and losses at high subsonic velocities. Transonic and supersonic flows in lattices are then analyzed. Some three-dimensional features of the flow in turbines are noted
A Modified Scalar-Tensor-Vector Gravity Theory and the Constraint on its Parameters
A gravity theory called scalar-tensor-vector gravity (STVG) has been recently
developed and succeeded in solar system, astrophysical and cosmological scales
without dark matter [J. W. Moffat, J. Cosmol. Astropart. Phys. 03, 004 (2006)].
However, two assumptions have been used: (i) , where and
are and in the Schwarzschild coordinates (static and
spherically symmetric); (ii) scalar field in the solar system. These
two assumptions actually imply that the standard parametrized post-Newtonian
parameter . In this paper, we relax these two assumptions and study
STVG further by using the post-Newtonian (PN) approximation approach. With
abandoning the assumptions, we find in general cases of STVG.
Then, a version of modified STVG (MSTVG) is proposed through introducing a
coupling function of scalar field G: . We have derived the metric
and equations of motion (EOM) in 1PN for general matter without specific
equation of state and point masses firstly. Subsequently, the secular
periastron precession of binary pulsars in harmonic coordinates
is given. After discussing two PPN parameters ( and ) and two
Yukawa parameters ( and ), we use of four
binary pulsars data (PSR B1913+16, PSR B1534+12, PSR J0737-3039 and PSR
B2127+11C) to constrain the Yukawa parameters for MSTVG:
m and if
we fix .Comment: 39 pages, 4 figures, accepted by PR
Coalescing Binary Neutron Stars
Coalescing compact binaries with neutron star or black hole components
provide the most promising sources of gravitational radiation for detection by
the LIGO/VIRGO/GEO/TAMA laser interferometers now under construction. This fact
has motivated several different theoretical studies of the inspiral and
hydrodynamic merging of compact binaries. Analytic analyses of the inspiral
waveforms have been performed in the Post-Newtonian approximation. Analytic and
numerical treatments of the coalescence waveforms from binary neutron stars
have been performed using Newtonian hydrodynamics and the quadrupole radiation
approximation. Numerical simulations of coalescing black hole and neutron star
binaries are also underway in full general relativity. Recent results from each
of these approaches will be described and their virtues and limitations
summarized.Comment: Invited Topical Review paper to appear in Classical and Quantum
Gravity, 35 pages, including 5 figure
Single molecule tracking fluorescence microscopy in mitochondria reveals highly dynamic but confined movement of Tom40
Tom40 is an integral protein of the mitochondrial outer membrane, which as the central component of the Translocase of the Outer Membrane (TOM) complex forms a channel for protein import. We characterize the diffusion properties of individual Tom40 molecules fused to the photoconvertable fluorescent protein Dendra2 with millisecond temporal resolution. By imaging individual Tom40 molecules in intact isolated yeast mitochondria using photoactivated localization microscopy with sub-diffraction limited spatial precision, we demonstrate that Tom40 movement in the outer mitochondrial membrane is highly dynamic but confined in nature, suggesting anchoring of the TOM complex as a whole
Recommended from our members
Innovations and advances in instrumentation at the W. M. Keck Observatory, vol. III
Recommended from our members
NACA Technical Memorandums
This report is concerned with fluid mechanics of two-dimensional cascades, particularly turbine cascades. Methods of solving the incompressible ideal flow in cascades are presented. The causes and the order of magnitude of the two-dimensional losses at subsonic velocities are discussed. Methods are presented for estimating the flow and losses at high subsonic velocities. Transonic and supersonic flows in lattices are then analyzed. Some three-dimensional features of the flow in turbines are noted
Contribution to the theory of the high compression ratio gas ejector with cylindrical mixing chamber
- …