We develop a theory for quotients of geometries and obtain sufficient
conditions for the quotient of a geometry to be a geometry. These conditions
are compared with earlier work on quotients, in particular by Pasini and Tits.
We also explore geometric properties such as connectivity, firmness and
transitivity conditions to determine when they are preserved under the
quotienting operation. We show that the class of coset pregeometries, which
contains all flag-transitive geometries, is closed under an appropriate
quotienting operation.Comment: 26 pages, 5 figure