384 research outputs found
Understanding the assembly of Kepler's compact planetary systems
The Kepler mission has recently discovered a number of exoplanetary systems,
such as Kepler-11 and Kepler-32, in which ensembles of several planets are
found in very closely packed orbits (often within a few percent of an AU of one
another). These compact configurations present a challenge for traditional
planet formation and migration scenarios. We present a dynamical study of the
assembly of these systems, using an N-body method which incorporates a
parametrized model of planet migration in a turbulent protoplanetary disc. We
explore a wide parameter space, and find that under suitable conditions it is
possible to form compact, close-packed planetary systems via traditional
disc-driven migration. We find that simultaneous migration of multiple planets
is a viable mechanism for the assembly of tightly-packed planetary systems, as
long as the disc provides significant eccentricity damping and the level of
turbulence in the disc is modest. We discuss the implications of our preferred
parameters for the protoplanetary discs in which these systems formed, and
comment on the occurrence and significance of mean-motion resonances in our
simulations.Comment: 12 pages, 4 figures, 2 tables. Accepted for publication in Monthly
Notices of the Royal Astronomical Societ
The Galactic Kinematics of Mira Variables
The galactic kinematics of Mira variables derived from radial velocities,
Hipparcos proper motions and an infrared period-luminosity relation are
reviewed. Local Miras in the 145-200day period range show a large asymmetric
drift and a high net outward motion in the Galaxy. Interpretations of this
phenomenon are considered and (following Feast and Whitelock 2000) it is
suggested that they are outlying members of the bulge-bar population and
indicate that this bar extends beyond the solar circle.Comment: 7 pages, 2 figure, to be published in Mass-Losing Pulsating Stars and
their Circumstellar Matter, Y. Nakada & M. Honma (eds) Kluwer ASSL serie
Dynamics of the Narrow-Line Region in the Seyfert 2 Galaxy NGC 1068
We present dynamical models based on a study of high-resolution long-slit
spectra of the narrow-line region (NLR) in NGC 1068 obtained with the Space
Telescope Imaging Spectrograph (STIS) aboard The Hubble Space Telescope (HST).
The dynamical models consider the radiative force due to the active galactic
nucleus (AGN), gravitational forces from the supermassive black hole (SMBH),
nuclear stellar cluster, and galactic bulge, and a drag force due to the NLR
clouds interacting with a hot ambient medium. The derived velocity profile of
the NLR gas is compared to that obtained from our previous kinematic models of
the NLR using a simple biconical geometry for the outflowing NLR clouds. The
results show that the acceleration profile due to radiative line driving is too
steep to fit the data and that gravitational forces along cannot slow the
clouds down, but with drag forces included, the clouds can slow down to the
systemic velocity over the range 100--400 pc, as observed. However, we are not
able to match the gradual acceleration of the NLR clouds from ~0 to ~100 pc,
indicating the need for additional dynamical studies.Comment: Paper prepared by emulateapj version 10/09/06 and accepted for print
in Ap
Axisymmetric Three-Integral Models for Galaxies
We describe an improved, practical method for constructing galaxy models that
match an arbitrary set of observational constraints, without prior assumptions
about the phase-space distribution function (DF). Our method is an extension of
Schwarzschild's orbit superposition technique. As in Schwarzschild's original
implementation, we compute a representative library of orbits in a given
potential. We then project each orbit onto the space of observables, consisting
of position on the sky and line-of-sight velocity, while properly taking into
account seeing convolution and pixel binning. We find the combination of orbits
that produces a dynamical model that best fits the observed photometry and
kinematics of the galaxy. A key new element of this work is the ability to
predict and match to the data the full line-of-sight velocity profile shapes. A
dark component (such as a black hole and/or a dark halo) can easily be included
in the models.
We have tested our method, by using it to reconstruct the properties of a
two-integral model built with independent software. The test model is
reproduced satisfactorily, either with the regular orbits, or with the
two-integral components. This paper mainly deals with the technical aspects of
the method, while applications to the galaxies M32 and NGC 4342 are described
elsewhere (van der Marel et al., Cretton & van den Bosch). (abridged)Comment: minor changes, accepted for publication in the Astrophysical Journal
Supplement
Dynamical Cusp Regeneration
After being destroyed by a binary supermassive black hole, a stellar density
cusp can regrow at the center of a galaxy via energy exchange between stars
moving in the gravitational field of the single, coalesced hole. We illustrate
this process via high-accuracy N-body simulations. Regeneration requires
roughly one relaxation time and the new cusp extends to a distance of roughly
one-fifth the black hole's influence radius, with density rho ~ r^{-7/4}; the
mass in the cusp is of order 10% the mass of the black hole. Growth of the cusp
is preceded by a stage in which the stellar velocity dispersion evolves toward
isotropy and away from the tangentially-anisotropic state induced by the
binary. We show that density profiles similar to those observed at the center
of the Milky Way and M32 can regenerate themselves in several Gyr following
infall of a second black hole; the presence of density cusps at the centers of
these galaxies can therefore not be used to infer that no merger has occurred.
We argue that Bahcall-Wolf cusps are ubiquitous in stellar spheroids fainter
than M_V ~ -18.5 that contain supermassive black holes, but the cusps have not
been detected outside of the Local Group since their angular sizes are less
than 0.1". We show that the presence of a cusp implies a lower limit of
\~10^{-4} per year on the rate of stellar tidal disruptions, and discuss the
consequences of the cusps for gravitational lensing and the distribution of
dark matter on sub-parsec scales.Comment: Accepted for publication in The Astrophysical Journa
Classical and quantum scattering by a Coulomb potential
For relativistic energies the small angle classical cross section for
scattering on a Coulomb potential agrees with the first Born approximation for
quantum cross section for scalar particle only in the leading term. The
disagreement in other terms can be avoided if the sum of all corrections to the
first Born approximation for large enough Coulomb charge contain the classical
terms which are independent of that charge. A small part of the difference in
classical and quantum cross sections may be attributed to the fact that the
relativistic quantum particle can rush through the field without interaction.
We expect that smaller impact parameters and spin facilitate this affect.Comment: 5pages, no figure
Long-Term Evolution of Massive Black Hole Binaries. III. Binary Evolution in Collisional Nuclei
[Abridged] In galactic nuclei with sufficiently short relaxation times,
binary supermassive black holes can evolve beyond their stalling radii via
continued interaction with stars. We study this "collisional" evolutionary
regime using both fully self-consistent N-body integrations and approximate
Fokker-Planck models. The N-body integrations employ particle numbers up to
0.26M and a direct-summation potential solver; close interactions involving the
binary are treated using a new implementation of the Mikkola-Aarseth chain
regularization algorithm. Even at these large values of N, two-body scattering
occurs at high enough rates in the simulations that they can not be simply
scaled to the large-N regime of real galaxies. The Fokker-Planck model is used
to bridge this gap; it includes, for the first time, binary-induced changes in
the stellar density and potential. The Fokker-Planck model is shown to
accurately reproduce the results of the N-body integrations, and is then
extended to the much larger N regime of real galaxies. Analytic expressions are
derived that accurately reproduce the time dependence of the binary semi-major
axis as predicted by the Fokker-Planck model. Gravitational wave coalescence is
shown to occur in <10 Gyr in nuclei with velocity dispersions below about 80
km/s. Formation of a core results from a competition between ejection of stars
by the binary and re-supply of depleted orbits via two-body scattering. Mass
deficits as large as ~4 times the binary mass are produced before coalescence.
After the two black holes coalesce, a Bahcall-Wolf cusp appears around the
single hole in one relaxation time, resulting in a nuclear density profile
consisting of a flat core with an inner, compact cluster, similar to what is
observed at the centers of low-luminosity spheroids.Comment: 21 page
A Redshift Survey of Nearby Galaxy Groups: the Shape of the Mass Density Profile
We constrain the mass profile and orbital structure of nearby groups and
clusters of galaxies. Our method yields the joint probability distribution of
the density slope n, the velocity anisotropy beta, and the turnover radius r0
for these systems. The measurement technique does not use results from N-body
simulations as priors. We incorporate 2419 new redshifts in the fields of 41
systems of galaxies with z < 0.04. The new groups have median velocity
dispersion sigma=360 km/s. We also use 851 archived redshifts in the fields of
8 nearly relaxed clusters with z < 0.1. Within R < 2 r200, the data are
consistent with a single power law matter density distribution with slope n =
1.8-2.2 for systems with sigma < 470 km/s, and n = 1.6-2.0 for those with sigma
> 470 km/s (95% confidence). We show that a simple, scale-free phase space
distribution function f(E,L^2) ~ (-E)^(alpha-1/2) L^(-2 \beta) is consistent
with the data as long as the matter density has a cusp. Using this DF, matter
density profiles with constant density cores (n=0) are ruled out with better
than 99.7% confidence.Comment: 22 pages; accepted for publication in the Astrophysical Journa
- âŠ