384 research outputs found

    Understanding the assembly of Kepler's compact planetary systems

    Full text link
    The Kepler mission has recently discovered a number of exoplanetary systems, such as Kepler-11 and Kepler-32, in which ensembles of several planets are found in very closely packed orbits (often within a few percent of an AU of one another). These compact configurations present a challenge for traditional planet formation and migration scenarios. We present a dynamical study of the assembly of these systems, using an N-body method which incorporates a parametrized model of planet migration in a turbulent protoplanetary disc. We explore a wide parameter space, and find that under suitable conditions it is possible to form compact, close-packed planetary systems via traditional disc-driven migration. We find that simultaneous migration of multiple planets is a viable mechanism for the assembly of tightly-packed planetary systems, as long as the disc provides significant eccentricity damping and the level of turbulence in the disc is modest. We discuss the implications of our preferred parameters for the protoplanetary discs in which these systems formed, and comment on the occurrence and significance of mean-motion resonances in our simulations.Comment: 12 pages, 4 figures, 2 tables. Accepted for publication in Monthly Notices of the Royal Astronomical Societ

    The Galactic Kinematics of Mira Variables

    Get PDF
    The galactic kinematics of Mira variables derived from radial velocities, Hipparcos proper motions and an infrared period-luminosity relation are reviewed. Local Miras in the 145-200day period range show a large asymmetric drift and a high net outward motion in the Galaxy. Interpretations of this phenomenon are considered and (following Feast and Whitelock 2000) it is suggested that they are outlying members of the bulge-bar population and indicate that this bar extends beyond the solar circle.Comment: 7 pages, 2 figure, to be published in Mass-Losing Pulsating Stars and their Circumstellar Matter, Y. Nakada & M. Honma (eds) Kluwer ASSL serie

    Dynamics of the Narrow-Line Region in the Seyfert 2 Galaxy NGC 1068

    Get PDF
    We present dynamical models based on a study of high-resolution long-slit spectra of the narrow-line region (NLR) in NGC 1068 obtained with the Space Telescope Imaging Spectrograph (STIS) aboard The Hubble Space Telescope (HST). The dynamical models consider the radiative force due to the active galactic nucleus (AGN), gravitational forces from the supermassive black hole (SMBH), nuclear stellar cluster, and galactic bulge, and a drag force due to the NLR clouds interacting with a hot ambient medium. The derived velocity profile of the NLR gas is compared to that obtained from our previous kinematic models of the NLR using a simple biconical geometry for the outflowing NLR clouds. The results show that the acceleration profile due to radiative line driving is too steep to fit the data and that gravitational forces along cannot slow the clouds down, but with drag forces included, the clouds can slow down to the systemic velocity over the range 100--400 pc, as observed. However, we are not able to match the gradual acceleration of the NLR clouds from ~0 to ~100 pc, indicating the need for additional dynamical studies.Comment: Paper prepared by emulateapj version 10/09/06 and accepted for print in Ap

    Axisymmetric Three-Integral Models for Galaxies

    Get PDF
    We describe an improved, practical method for constructing galaxy models that match an arbitrary set of observational constraints, without prior assumptions about the phase-space distribution function (DF). Our method is an extension of Schwarzschild's orbit superposition technique. As in Schwarzschild's original implementation, we compute a representative library of orbits in a given potential. We then project each orbit onto the space of observables, consisting of position on the sky and line-of-sight velocity, while properly taking into account seeing convolution and pixel binning. We find the combination of orbits that produces a dynamical model that best fits the observed photometry and kinematics of the galaxy. A key new element of this work is the ability to predict and match to the data the full line-of-sight velocity profile shapes. A dark component (such as a black hole and/or a dark halo) can easily be included in the models. We have tested our method, by using it to reconstruct the properties of a two-integral model built with independent software. The test model is reproduced satisfactorily, either with the regular orbits, or with the two-integral components. This paper mainly deals with the technical aspects of the method, while applications to the galaxies M32 and NGC 4342 are described elsewhere (van der Marel et al., Cretton & van den Bosch). (abridged)Comment: minor changes, accepted for publication in the Astrophysical Journal Supplement

    Dynamical Cusp Regeneration

    Get PDF
    After being destroyed by a binary supermassive black hole, a stellar density cusp can regrow at the center of a galaxy via energy exchange between stars moving in the gravitational field of the single, coalesced hole. We illustrate this process via high-accuracy N-body simulations. Regeneration requires roughly one relaxation time and the new cusp extends to a distance of roughly one-fifth the black hole's influence radius, with density rho ~ r^{-7/4}; the mass in the cusp is of order 10% the mass of the black hole. Growth of the cusp is preceded by a stage in which the stellar velocity dispersion evolves toward isotropy and away from the tangentially-anisotropic state induced by the binary. We show that density profiles similar to those observed at the center of the Milky Way and M32 can regenerate themselves in several Gyr following infall of a second black hole; the presence of density cusps at the centers of these galaxies can therefore not be used to infer that no merger has occurred. We argue that Bahcall-Wolf cusps are ubiquitous in stellar spheroids fainter than M_V ~ -18.5 that contain supermassive black holes, but the cusps have not been detected outside of the Local Group since their angular sizes are less than 0.1". We show that the presence of a cusp implies a lower limit of \~10^{-4} per year on the rate of stellar tidal disruptions, and discuss the consequences of the cusps for gravitational lensing and the distribution of dark matter on sub-parsec scales.Comment: Accepted for publication in The Astrophysical Journa

    Classical and quantum scattering by a Coulomb potential

    Full text link
    For relativistic energies the small angle classical cross section for scattering on a Coulomb potential agrees with the first Born approximation for quantum cross section for scalar particle only in the leading term. The disagreement in other terms can be avoided if the sum of all corrections to the first Born approximation for large enough Coulomb charge contain the classical terms which are independent of that charge. A small part of the difference in classical and quantum cross sections may be attributed to the fact that the relativistic quantum particle can rush through the field without interaction. We expect that smaller impact parameters and spin facilitate this affect.Comment: 5pages, no figure

    Long-Term Evolution of Massive Black Hole Binaries. III. Binary Evolution in Collisional Nuclei

    Get PDF
    [Abridged] In galactic nuclei with sufficiently short relaxation times, binary supermassive black holes can evolve beyond their stalling radii via continued interaction with stars. We study this "collisional" evolutionary regime using both fully self-consistent N-body integrations and approximate Fokker-Planck models. The N-body integrations employ particle numbers up to 0.26M and a direct-summation potential solver; close interactions involving the binary are treated using a new implementation of the Mikkola-Aarseth chain regularization algorithm. Even at these large values of N, two-body scattering occurs at high enough rates in the simulations that they can not be simply scaled to the large-N regime of real galaxies. The Fokker-Planck model is used to bridge this gap; it includes, for the first time, binary-induced changes in the stellar density and potential. The Fokker-Planck model is shown to accurately reproduce the results of the N-body integrations, and is then extended to the much larger N regime of real galaxies. Analytic expressions are derived that accurately reproduce the time dependence of the binary semi-major axis as predicted by the Fokker-Planck model. Gravitational wave coalescence is shown to occur in <10 Gyr in nuclei with velocity dispersions below about 80 km/s. Formation of a core results from a competition between ejection of stars by the binary and re-supply of depleted orbits via two-body scattering. Mass deficits as large as ~4 times the binary mass are produced before coalescence. After the two black holes coalesce, a Bahcall-Wolf cusp appears around the single hole in one relaxation time, resulting in a nuclear density profile consisting of a flat core with an inner, compact cluster, similar to what is observed at the centers of low-luminosity spheroids.Comment: 21 page

    A Redshift Survey of Nearby Galaxy Groups: the Shape of the Mass Density Profile

    Full text link
    We constrain the mass profile and orbital structure of nearby groups and clusters of galaxies. Our method yields the joint probability distribution of the density slope n, the velocity anisotropy beta, and the turnover radius r0 for these systems. The measurement technique does not use results from N-body simulations as priors. We incorporate 2419 new redshifts in the fields of 41 systems of galaxies with z < 0.04. The new groups have median velocity dispersion sigma=360 km/s. We also use 851 archived redshifts in the fields of 8 nearly relaxed clusters with z < 0.1. Within R < 2 r200, the data are consistent with a single power law matter density distribution with slope n = 1.8-2.2 for systems with sigma < 470 km/s, and n = 1.6-2.0 for those with sigma > 470 km/s (95% confidence). We show that a simple, scale-free phase space distribution function f(E,L^2) ~ (-E)^(alpha-1/2) L^(-2 \beta) is consistent with the data as long as the matter density has a cusp. Using this DF, matter density profiles with constant density cores (n=0) are ruled out with better than 99.7% confidence.Comment: 22 pages; accepted for publication in the Astrophysical Journa
    • 

    corecore