970 research outputs found
Past electron-positron g-2 experiments yielded sharpest bound on CPT violation for point particles
In our past experiments on a single electron and positron we measured the
cyclotron and spin-cyclotron difference frequencies omega_c and omega_a and the
ratios a = omega_a/ omega_c at omega_c = 141 Ghz for e^- and e^+ and later,
only for e^-, also at 164 Ghz. Here, we do extract from these data, as had not
done before, a new and very different figure of merit for violation of CPT
symmetry, one similar to the widely recognized impressive limit |m_Kaon -
m_Antikaon|/m_Kaon < 10^-18 for the K-mesons composed of two quarks. That
expression may be seen as comparing experimental relativistic masses of
particle states before and after the C, P, T operations had transformed
particle into antiparticle. Such a similar figure of merit for a non-composite
and quite different lepton, found by us from our Delta a = a^- - a^+ data, was
even smaller, h_bar |omega_a^- - omega_a^+|/2m_0 c^2 = |Delta a| h_bar
omega_c/2m_0 c^2) < 3(12) 10^-22.Comment: Improved content, Editorially approved for publication in PRL, LATEX
file, 5 pages, no figures, 16
Robust Entanglement through Macroscopic Quantum Jumps
We propose an entanglement generation scheme that requires neither the
coherent evolution of a quantum system nor the detection of single photons.
Instead, the desired state is heralded by a {\em macroscopic} quantum jump.
Macroscopic quantum jumps manifest themselves as a random telegraph signal with
long intervals of intense fluorescence (light periods) interrupted by the
complete absence of photons (dark periods). Here we show that a system of two
atoms trapped inside an optical cavity can be designed such that a dark period
prepares the atoms in a maximally entangled ground state. Achieving fidelities
above 0.9 is possible even when the single-atom cooperativity parameter C is as
low as 10 and when using a photon detector with an efficiency as low as eta =
0.2.Comment: 5 pages, 4 figures, more detailed discussion of underlying physical
effect, references update
Quantum coherence and population trapping in three-photon processes
The spectroscopic properties of a single, tightly trapped atom are studied,
when the electronic levels are coupled by three laser fields in an -shaped
configuration of levels, whereby a -type level system is weakly
coupled to a metastable state. We show that depending on the laser frequencies
the response can be tuned from coherent population trapping at two-photon
resonance to novel behaviour at three photon resonance, where the metastable
state can get almost unit occupation in a wide range of parameters. For certain
parameter regimes the system switches spontaneously between dissipative and
coherent dynamics over long time scales
Locking Local Oscillator Phase to the Atomic Phase via Weak Measurement
We propose a new method to reduce the frequency noise of a Local Oscillator
(LO) to the level of white phase noise by maintaining (not destroying by
projective measurement) the coherence of the ensemble pseudo-spin of atoms over
many measurement cycles. This scheme uses weak measurement to monitor the phase
in Ramsey method and repeat the cycle without initialization of phase and we
call, "atomic phase lock (APL)" in this paper. APL will achieve white phase
noise as long as the noise accumulated during dead time and the decoherence are
smaller than the measurement noise. A numerical simulation confirms that with
APL, Allan deviation is averaged down at a maximum rate that is proportional to
the inverse of total measurement time, tau^-1. In contrast, the current atomic
clocks that use projection measurement suppress the noise only down to the
level of white frequency, in which case Allan deviation scales as tau^-1/2.
Faraday rotation is one of the possible ways to realize weak measurement for
APL. We evaluate the strength of Faraday rotation with 171Yb+ ions trapped in a
linear rf-trap and discuss the performance of APL. The main source of the
decoherence is a spontaneous emission induced by the probe beam for Faraday
rotation measurement. One can repeat the Faraday rotation measurement until the
decoherence become comparable to the SNR of measurement. We estimate this
number of cycles to be ~100 cycles for a realistic experimental parameter.Comment: 18 pages, 7 figures, submitted to New Journal of Physic
Macroscopic quantum jumps and entangled state preparation
Recently we predicted a random blinking, i.e. macroscopic quantum jumps, in
the fluorescence of a laser-driven atom-cavity system [Metz et al., Phys. Rev.
Lett. 97, 040503 (2006)]. Here we analyse the dynamics underlying this effect
in detail and show its robustness against parameter fluctuations. Whenever the
fluorescence of the system stops, a macroscopic dark period occurs and the
atoms are shelved in a maximally entangled ground state. The described setup
can therefore be used for the controlled generation of entanglement. Finite
photon detector efficiencies do not affect the success rate of the state
preparation, which is triggered upon the observation of a macroscopic
fluorescence signal. High fidelities can be achieved even in the vicinity of
the bad cavity limit due to the inherent role of dissipation in the jump
process.Comment: 14 pages, 12 figures, proof of the robustness of the state
preparation against parameter fluctuations added, figure replace
Evaporation of buffer gas-thermalized anions out of a multipole rf ion trap
We identify plain evaporation of ions as the fundamental loss mechanism out
of a multipole ion trap. Using thermalized negative Cl- ions we find that the
evaporative loss rate is proportional to a Boltzmann factor. This thermodynamic
description sheds new light on the dynamics of particles in time-varying
confining potentials. It specifically allows us to extract the effective depth
of the ion trap as the activation energy for evaporation. As a function of the
rf amplitude we find two distinct regimes related to the stability of motion of
the trapped ions. For low amplitudes the entire trap allows for stable motion
and the trap depth increases with the rf field. For larger rf amplitudes,
however, rapid energy transfer from the field to the ion motion can occur at
large trap radii, which leads to a reduction of the effective trapping volume.
In this regime the trap depth decreases again with increasing rf amplitude. We
give an analytical parameterization of the trap depth for various multipole
traps that allows predictions of the most favorable trapping conditions.Comment: Phys. Rev. Lett., in pres
Measurement of the hyperfine structure of the S1/2-D5/2 transition in 43Ca+
The hyperfine structure of the S1/2-D5/2 quadrupole transition at 729 nm in
43Ca+ has been investigated by laser spectroscopy using a single trapped 43Ca+
ion. We determine the hyperfine structure constants of the metastable level as
A=-3.8931(2) MHz and B=-4.241(4) MHz. The isotope shift of the transition with
respect to 40Ca+ was measured to be 4134.713(5) MHz. We demonstrate the
existence of transitions that become independent of the first-order Zeeman
shift at non-zero low magnetic fields. These transitions might be better suited
for building a frequency standard than the well-known 'clock transitions'
between m=0 levels at zero magnetic field.Comment: corrected for sign errors in the hyperfine constants. No corrections
to were made to the data analysi
Electric Quadrupole Moments of Metastable States of Ca+, Sr+, and Ba+
Electric quadrupole moments of the metastable nd3/2 and nd5/2 states of Ca+,
Sr+, and Ba+ are calculated using the relativistic all-order method including
all single, double, and partial triple excitations of the Dirac-Hartree-Fock
wave function to provide recommended values for the cases where no experimental
data are available. The contributions of all non-linear single and double terms
are also calculated for the case of Ca+ for comparison of our approach with the
CCSD(T) results. The third-order many body perturbation theory is used to
evaluate contributions of high partial waves and the Breit interaction. The
remaining omitted correlation corrections are estimated as well. Extensive
study of the uncertainty of our calculations is carried out to establish
accuracy of our recommended values to be 0.5% - 1% depending on the particular
ion. Comprehensive comparison of our results with other theoretical values and
experiment is carried out. Our result for the quadrupole moment of the 3d5/2
state of Ca+ ion, 1.849(17)ea_0^2, is in agreement with the most precise recent
measurement 1.83(1)ea_0^2 by Roos et al. [Nature 443, 316 (2006)].Comment: 7 page
- …