74 research outputs found
Recommended from our members
Flow coupling during three-phase gravity drainage
We measure the three-phase oil relative permeability k(ro) by conducting unsteady-state drainage experiments in a 0.8 m water-wet sand pack. We find that when starting from capillary-trapped oil, k(ro) shows a strong dependence on both the flow of water and the water saturation and a weak dependence on oil saturation, contrary to most models. The observed flow coupling between water and oil is stronger in three-phase flow than two-phase flow, and cannot be observed in steady-state measurements. The results suggest that the oil is transported through moving gas-oil-water interfaces (form drag) or momentum transport across stationary interfaces (friction drag). We present a simple model of friction drag which compares favorably to the experimental data.University of Texas at AustinCenter for Frontiers of Subsurface Energy SecurityUS Department of Energy, Office of Basic Energy Sciences DE-SC0001114Petroleum and Geosystems Engineerin
Hourly Price-Based Demand Response for Optimal Scheduling of Integrated Gas and Power Networks Considering Compressed Air Energy Storage
Gas-fired plants are becoming an optimal and practical choice for power generation in electricity grids due to high efficiency and less emissions. Such plants with fast start-up capability and high ramp rate are flexible in response to stochastic load variations. Meanwhile, gas system constraints affect the flexibility and participation of such units in the energy market. Compressed air energy storage (CAES) as a flexible source with high ramp rate can be an alternative solution to reduce the impact of gas system constraints on the operation cost of a power system. In addition, demand response (DR) programs are expressed as practical approaches to overcome peak-demand challenges. This study introduces a stochastic unit commitment scheme for coordinated operation of gas and power systems with CAES technology as well as application of an hourly price-based DR. The introduced model is performed on a six-bus system with a six-node gas system to verify the satisfactory performance of the model
Electrochemical Synthesis and Structural Characterization of a Novel Mixed-valence Copper (I)-copper (II) Complex: {[Bis(ethylenediamine) Copper (II)] Bis[diiodocuprate (I)]}
A novel, mixed-valent copper(I)-copper(II) complex, {[bis(ethylene-diamine)copper(II)] bis[diiodocuprate(I)]} (1), has been prepared by electrochemicaldissolution of a sacrificial copper anode in a solution of ethylenediamine (en), I2 andtetraethylammoniumperchlorate (TEAP) as supporting electrolyte in acetonitrile (AcN)and characterized by single-crystal X-ray structure determination. The crystal structure ofthe complex 1 shows that it consists of a CuI2 polymer formed from I- ligands bridgingCu(I) ions, with a nearly square planar geometry of bivalente Cu(II) atoms chelated by twoethylenediamine ligands. The results also show that direct electrosynthesis of the complexhad high current efficiency, purity and electrolysis yield
The learning curve in bladder MRI using VI-RADS assessment score during an interactive dedicated training program
Objective: The purpose of the study was to evaluate the effect of an interactive training program on the learning curve of radiology residents for bladder MRI interpretation using the VI-RADS score. Methods: Three radiology residents with minimal experience in bladder MRI served as readers. They blindly evaluated 200 studies divided into 4 subsets of 50 cases over a 3-month period. After 2 months, the first subset was reassessed, resulting in a total of 250 evaluations. An interactive training program was provided and included educational lessons and case-based practice. The learning curve was constructed by plotting mean agreement as the ratio of correct evaluations per batch. Inter-reader agreement and diagnostic performance analysis were performed with kappa statistics and ROC analysis. Results: As for the VI-RADS scoring agreement, the kappa differences between pre-training and post-training evaluation of the same group of cases were 0.555 to 0.852 for reader 1, 0.522 to 0.695 for reader 2, and 0.481 to 0.794 for reader 3. Using VI-RADS ≥ 3 as cut-off for muscle invasion, sensitivity ranged from 84 to 89% and specificity from 91 to 94%, while the AUCs from 0.89 (95% CI:0.84, 0.94) to 0.90 (95% CI:0.86, 0.95). Mean evaluation time decreased from 5.21 ± 1.12 to 3.52 ± 0.69 min in subsets 1 and 5. Mean grade of confidence improved from 3.31 ± 0.93 to 4.21 ± 0.69, in subsets 1 and 5. Conclusion: An interactive dedicated education program on bladder MRI and the VI-RADS score led to a significant increase in readers’ diagnostic performance over time, with a general improvement observed after 100–150 cases. Key Points: • After the first educational lesson and 100 cases were interpreted, the concordance on VI-RADS scoring between the residents and the experienced radiologist was significantly higher. • An increase in the grade of confidence was experienced after 100 cases. • We found a decrease in the evaluation time after 150 cases
- …