8 research outputs found

    Betulinic acid inhibits colon cancer cell and tumor growth and induces proteasome-dependent and -independent downregulation of specificity proteins (Sp) transcription factors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Betulinic acid (BA) inhibits growth of several cancer cell lines and tumors and the effects of BA have been attributed to its mitochondriotoxicity and inhibition of multiple pro-oncogenic factors. Previous studies show that BA induces proteasome-dependent degradation of specificity protein (Sp) transcription factors Sp1, Sp3 and Sp4 in prostate cancer cells and this study focused on the mechanism of action of BA in colon cancer cells.</p> <p>Methods</p> <p>The effects of BA on colon cancer cell proliferation and apoptosis and tumor growth <it>in vivo </it>were determined using standardized assays. The effects of BA on Sp proteins and Sp-regulated gene products were analyzed by western blots, and real time PCR was used to determine microRNA-27a (miR-27a) and ZBTB10 mRNA expression.</p> <p>Results</p> <p>BA inhibited growth and induced apoptosis in RKO and SW480 colon cancer cells and inhibited tumor growth in athymic nude mice bearing RKO cells as xenograft. BA also decreased expression of Sp1, Sp3 and Sp4 transcription factors which are overexpressed in colon cancer cells and decreased levels of several Sp-regulated genes including survivin, vascular endothelial growth factor, p65 sub-unit of NFκB, epidermal growth factor receptor, cyclin D1, and pituitary tumor transforming gene-1. The mechanism of action of BA was dependent on cell context, since BA induced proteasome-dependent and proteasome-independent downregulation of Sp1, Sp3 and Sp4 in SW480 and RKO cells, respectively. In RKO cells, the mechanism of BA-induced repression of Sp1, Sp3 and Sp4 was due to induction of reactive oxygen species (ROS), ROS-mediated repression of microRNA-27a, and induction of the Sp repressor gene ZBTB10.</p> <p>Conclusions</p> <p>These results suggest that the anticancer activity of BA in colon cancer cells is due, in part, to downregulation of Sp1, Sp3 and Sp4 transcription factors; however, the mechanism of this response is cell context-dependent.</p

    Authentication of Transylvanian Spirits Based on Isotope and Elemental Signatures in Conjunction with Statistical Methods

    No full text
    The potential association between stable isotope ratios of light elements and mineral content, in conjunction with unsupervised and supervised statistical methods, for differentiation of spirits, with respect to some previously defined criteria, is reviewed in this work. Thus, based on linear discriminant analysis (LDA), it was possible to differentiate the geographical origin of distillates in a percentage of 96.2% for the initial validation, and the cross-validation step of the method returned 84.6% of correctly classified samples. An excellent separation was also obtained for the differentiation of spirits producers, 100% in initial classification, and 95.7% in cross-validation, respectively. For the varietal recognition, the best differentiation was achieved for apricot and pear distillates, a 100% discrimination being obtained in both classifications (initial and cross-validation). Good classification percentages were also obtained for plum and apple distillates, where models with 88.2% and 82.4% in initial and cross-validation, respectively, were achieved for plum differentiation. A similar value in the cross-validation procedure was reached for the apple spirits. The lowest classification percent was obtained for quince distillates (76.5% in initial classification followed by 70.4% in cross-validation). Our results have high practical importance, especially for trademark recognition, taking into account that fruit distillates are high-value commodities; therefore, the temptation of &ldquo;fraud&rdquo;, i.e., by passing regular distillates as branded ones, could occur

    In Vitro Toxicological Profile of Labetalol-Folic Acid/Folate Co-Administration in H9c2(2-1) and HepaRG Cells

    No full text
    Background and Objectives: The consumption of dietary supplements has increased over the last decades among pregnant women, becoming an efficient resource of micronutrients able to satisfy their nutritional needs during pregnancy. Furthermore, gestational drug administration might be necessary to treat several pregnancy complications such as hypertension. Folic acid (FA) and folate (FT) supplementation is highly recommended by clinicians during pregnancy, especially for preventing neural tube birth defects, while labetalol (LB) is a β-blocker commonly administered as a safe option for the treatment of pregnancy-related hypertension. Currently, the possible toxicity resulting from the co-administration of FA/FT and LB has not been fully evaluated. In light of these considerations, the current study was aimed at investigating the possible in vitro cardio- and hepato-toxicity of LB-FA and LB-FT associations. Materials and Methods: Five different concentrations of LB, FA, FT, and their combination were used in myoblasts and hepatocytes in order to assess cell viability, cell morphology, and wound regeneration. Results: The results indicate no significant alterations in terms of cell viability and morphology in myoblasts (H9c2(2-1)) and hepatocytes (HepaRG) following a 72-h treatment, apart from a decrease in the percentage of viable H9c2(2-1) cells (~67%) treated with LB 150 nM–FT 50 nM. Additionally, LB (50 and 150 nM)–FA (0.2 nM) exerted an efficient wound regenerating potential in H9c2(2-1) myoblasts (wound healing rates were >80%, compared to the control at 66%), while LB-FT (at all tested concentrations) induced no significant impairment to their migration. Conclusions: Overall, our findings indicate that LB-FA and LB-FT combinations lack cytotoxicity in vitro. Moreover, beneficial effects were noticed on H9c2(2-1) cell viability and migration from LB-FA/FT administration, which should be further explored

    Antibacterial and antitumor activity of the species Prunella vulgaris L.

    No full text
    Background: Prunella vulgaris L., known as self-healing herb, is a widely spread species in the spontaneous flora with beneficial effects on human health, a fact proven in particular by Asian researchers. The aim of this study was to evaluate the antitumor activity and the antibacterial effect on different bacterial strains, including multidrug-resistant ones, depending on the type of solvent used (aqueous, hydroalcoholic), the plant product taken into consideration (spike inflorescence, leaf), its quantity and the concentration of active principles

    Novel Synthesized N-Ethyl-Piperazinyl-Amides of C2-Substituted Oleanonic and Ursonic Acids Exhibit Cytotoxic Effects through Apoptotic Cell Death Regulation

    No full text
    A series of novel hybrid chalcone N-ethyl-piperazinyl amide derivatives of oleanonic and ursonic acids were synthesized, and their cytotoxic potential was evaluated in vitro against the NCI-60 cancer cell line panel. Compounds 4 and 6 exhibited the highest overall anticancer activity, with GI50 values in some cases reaching nanomolar values. Thus, the two compounds were further assessed in detail in order to identify a possible apoptosis- and antiangiogenic-based mechanism of action induced by the assessed compounds. DAPI staining revealed that both compounds induced nuclei condensation and overall cell morphological changes consistent with apoptotic cell death. rtPCR analysis showed that up-regulation of pro-apoptotic Bak gene combined with the down-regulation of the pro-survival Bcl-XL and Bcl-2 genes caused altered ratios between the pro-apoptotic and anti-apoptotic proteins’ levels, leading to overall induced apoptosis. Molecular docking analysis revealed that both compounds exhibited high scores for Bcl-XL inhibition, suggesting that compounds may induce apoptotic cell death through targeted anti-apoptotic protein inhibition, as well. Ex vivo determinations showed that both compounds did not significantly alter the angiogenesis process on the tested cell lines

    3-Pyridinylidene Derivatives of Chemically Modified Lupane and Ursane Triterpenes as Promising Anticancer Agents by Targeting Apoptosis

    No full text
    Cancer persists as a global challenge due to the extent to which conventional anticancer therapies pose high risks counterbalanced with their therapeutic benefit. Naturally occurring substances stand as an important safer alternative source for anticancer drug development. In the current study, a series of modified lupane and ursane derivatives was subjected to in vitro screening on the NCI-60 cancer cell line panel. Compounds 6 and 7 have been identified as highly active with GI50 values ranging from 0.03 µM to 5.9 µM (compound 6) and 0.18–1.53 µM (compound 7). Thus, these two compounds were further assessed in detail in order to identify a possible antiproliferative mechanism of action. DAPI (4′,6-diamidino-2-phenylindole) staining revealed that both compounds induced nuclei condensation and overall cell morphological changes consistent with apoptotic cell death. rtPCR analysis showed that both compounds induced upregulation of proapoptotic Bak and Bad genes while downregulating Bcl-XL and Bcl-2 antiapoptotic genes. Molecular docking analysis revealed that both compounds exhibited high scores for Bcl-XL inhibition, while compound 7 showed higher in silico Bcl-XL inhibition potential as compared to the native inhibitor ATB-737, suggesting that compounds may induce apoptotic cell death through targeted antiapoptotic protein inhibition, as well

    Modelling the cumulative impacts of future coal mining and coal seam gas extraction on river flows: applications of methodology

    No full text
    This manuscript presents examples of the modelling of the impacts of coal mining and coal seam gas extraction on streamflow in five study catchments in Australia. The manuscript includes details on data preparation and model set-up and calibration. The modelling methodology enables the prediction of cumulative impacts from multiple future coal resource developments and distributes these predictions at multiple locations in the landscape. It is framed in terms of a structured uncertainty analysis to provide information on the likelihoods and potential ranges of various impacts. Also included is a qualitative uncertainty analysis which subjectively assesses the likely impact on model results of various assumptions made during the modelling procedure. Model results suggest that, in the Australian context, maximum percentage reductions in annual streamflow are approximately commensurate with the proportion of coal mine coverage. In coal seam gas fields, reductions in annual streamflow are proportional to well density. The manuscript goes on to demonstrate how these modelling results can be used to identify a zone of potential hydrological change within a catchment. This zone delineates those parts of the landscape where water-dependent landscape classes and assets may be vulnerable to change associated with changes in the streamflow regime. A corollary of this is that any parts of the landscape outside the zone of potential hydrological change are unlikely to be affected by coal resource development
    corecore