151 research outputs found
Recommended from our members
Advantages of Traveling Wave Resonant Antennas for Fast Wave Heating Systems
The resilience of a maximally flat externally coupled traveling wave antenna (TWA) is contrasted with the sensitivity of a simple directly driven resonant loop array to vacuum and plasma conditions in DIII-D. We find a unique synergy between standing and traveling wave resonant TWA components. This synergy extends TWA operation to several passbands between 60 and 120 MHZ, provides 60{degrees}- 120{degrees} tunability between elements within a 1-2 MHZ bandwidth and permits efficient and continuous operation during ELMing H-mode
Recommended from our members
Interaction of fast waves with ions
To fully utilize the available power sources in DIII-D (FW, NBI, ECH), understanding of the synergism between the heating mechanisms is important. In this paper the ion distribution, under simultaneous application of NBI and FW, is calculated from Fokker-Planck code CQL3D coupled to ray-tracing code CURRAY. It is found that interaction between energetic ions and FW can be minimized or maximized by adjusting various parameters such as magnetic field, density, beam energy, and FW frequency. Specifically, in DIII-D, the authors find negligible interactions above 1.8 T and above 80 MHz, while the interaction increases at lower fields and frequencies. The results are compared with experiments in DIII-D including the calculated neutron rate. Energetic ion orbit losses may play an important role in the ion distribution, and this effect is being investigated
Recommended from our members
Plasma rotation and rf heating in DIII-D
In a variety of discharge conditions on DIII-D it is observed that rf electron heating reduces the toroidal rotation speed and core ion temperature. The rf heating can be with either fast wave or electron cyclotron heating and this effect is insensitive to the details of the launched toroidal wavenumber spectrum. To date all target discharges have rotation first established with co-directed neutral beam injection. A possible cause is enhanced ion momentum and thermal diffusivity due to electron heating effectively creating greater anomalous viscosity. Another is that a counter directed toroidal force is applied to the bulk plasma via rf driven radial current
Recommended from our members
Correlation of Neutral Beam Injection Parameters and Core B with Anomalous First-Wall Heating During QH-Mode
Anomalous first-wall heating has been observed far from the divertor strike point during QH-mode in DIII-D, with measured heat flux comparable to that at the outer strike point. The data are consistent with deuterium ions of approximately the pedestal energy carrying the anomalous heat flux. Although an instability has not been identified that is correlated with the anomalous heat flux, two classes of behavior have been observed: one in which the anomalous heat flux depends linearly on core {beta}, and another class with no {beta}-dependence. The anomalous heat flux depends strongly on the injected beam energy of the non-tangentially-injected neutral beams but not that of the tangential beams
Collective modes and correlations in one-component plasmas
The static and time-dependent potential and surface charge correlations in a
plasma with a boundary are computed for different shapes of the boundary. The
case of a spheroidal or spherical one-component plasma is studied in detail
because experimental results are available for such systems. Also, since there
is some knowlegde both experimental and theoretical about the electrostatic
collective modes of these plasmas, the time-dependent correlations are computed
using a method involving these modes.Comment: 20 pages, plain TeX, submitted to Phys. Rev.
Recommended from our members
Plasma mass density, species mix and fluctuation diagnostics using fast Alfven wave
The authors propose to employ a fast Alfven wave interferometer and reflectometer as a tokamak diagnostic to measure the plasma mass density, D-T species mix profile, and density fluctuations. Utilize the property that the phase velocity of the fast wave propagating across the magnetic field is the Alfven speed with thermal correction, this fast wave interferometer on the DIII-D tokamak was successfully used to obtain the line integrated density. Since the position of the ion-ion hybrid cut-off in tokamaks is uniquely determined by the species mix ratio and the wave frequency, the reflectometer arrangement finds the species mix profile. The inversion method of reflectometry is discussed. The multiple chord interferometer also measures the mass density fluctuation profile
- …