162 research outputs found
Measurements of SCRF cavity dynamic heat load in horizontal test system
The Horizontal Test System (HTS) at Fermilab is currently testing fully
assembled, dressed superconducting radio frequency (SCRF) cavities. These
cavities are cooled in a bath of superfluid helium at 1.8K. Dissipated RF power
from the cavities is a dynamic heat load on the cryogenic system. The magnitude
of heat flux from these cavities into the helium is also an important variable
for understanding cavity performance. Methods and hardware used to measure this
dynamic heat load are presented. Results are presented from several cavity
tests and testing accuracy is discussed.Comment: 6 pp. Cryogenic Engineering Conference and International Cryogenic
Materials Conference 28 Jun - 2 Jul 2009. Tucson, Arizon
Recommended from our members
Measurements of SCRF cavity dynamic heat load in horizontal test system
The Horizontal Test System (HTS) at Fermilab is currently testing fully assembled, dressed superconducting radio frequency (SCRF) cavities. These cavities are cooled in a bath of superfluid helium at 1.8K. Dissipated RF power from the cavities is a dynamic heat load on the cryogenic system. The magnitude of heat flux from these cavities into the helium is also an important variable for understanding cavity performance. Methods and hardware used to measure this dynamic heat load are presented. Results are presented from several cavity tests and testing accuracy is discussed
Diversity, competition, extinction: the ecophysics of language change
As early indicated by Charles Darwin, languages behave and change very much
like living species. They display high diversity, differentiate in space and
time, emerge and disappear. A large body of literature has explored the role of
information exchanges and communicative constraints in groups of agents under
selective scenarios. These models have been very helpful in providing a
rationale on how complex forms of communication emerge under evolutionary
pressures. However, other patterns of large-scale organization can be described
using mathematical methods ignoring communicative traits. These approaches
consider shorter time scales and have been developed by exploiting both
theoretical ecology and statistical physics methods. The models are reviewed
here and include extinction, invasion, origination, spatial organization,
coexistence and diversity as key concepts and are very simple in their defining
rules. Such simplicity is used in order to catch the most fundamental laws of
organization and those universal ingredients responsible for qualitative
traits. The similarities between observed and predicted patterns indicate that
an ecological theory of language is emerging, supporting (on a quantitative
basis) its ecological nature, although key differences are also present. Here
we critically review some recent advances lying and outline their implications
and limitations as well as open problems for future research.Comment: 17 Pages. A review on current models from statistical Physics and
Theoretical Ecology applied to study language dynamic
Reynolds-number Dependence of Streamwise Velocity Fluctuations in Turbulent Pipe Flow
Statistics of the streamwise velocity component in fully-developed pipe flow are examined for Reynolds numbers in the range 5.5 x 10^4 < Re_D < 5.7 x 10^6. The second moment exhibits two maxima: one in the viscous sublayer is Reynolds-number dependent while the other, near the lower edge of the log region, is also Reynolds-number dependent and follows roughly the peak in Reynolds shear stress. The behaviour of both peaks is consistent with the concept of inactive motion which increases with increasing Reynolds number and decreasing distance from the wall. No simple scaling is apparent, and in particular, so-called "mixed" scaling is no better than wall scaling in the viscous sublayer and is actually worse than wall scaling in the outer region. The second moment is compared with empirical and theoretical scaling laws
and some anomalies are apparent. The scaling of spectra using y, R and u_Ï is examined. It appears that even at the highest Reynolds number, they exhibit
incomplete similarity only: while spectra do collapse with either inner or outer scales for limited ranges of wave number, these ranges do not overlap. Thus similarity may not be described as complete and any apparent k_1^(-1) range does not attract any special significance and does not involve universal constants. It is suggested that this is because of the influence of inactive motion. Spectra also show the presence of very long structures close to the wall
Insulin-like growth factor-binding protein-2 promotes prostate cancer cell growth via IGF-dependent or -independent mechanisms and reduces the efficacy of docetaxel
Background: The development of androgen independence, chemo-, and radioresistance are critical markers of prostate cancer progression and the predominant reasons for its high mortality. Understanding the resistance to therapy could aid the development of more effective treatments. Aim: The aim of this study is to investigate the effects of insulin-like growth factor-binding protein-2 (IGFBP-2) on prostate cancer cell proliferation and its effects on the response to docetaxel. Methods: DU145 and PC3 cells were treated with IGFBP-2, insulin-like growth factor I (IGF-I) alone or in combination with blockade of the IGF-I receptor or integrin receptors. Cells were also treated with IGFBP-2 short interfering ribonucleic acid with or without a PTEN (phosphatase and tensin homologue deleted on chromosome 10) inhibitor or docetaxel. Tritiated thymidine incorporation was used to measure cell proliferation and Trypan blue cell counting for cell death. Levels of IGFBP-2 mRNA were measured using RT-PCR. Abundance and phosphorylation of proteins were assessed using western immunoblotting. Results: The IGFBP-2 promoted cell growth in both cell lines but with PC3 cells this was in an IGF-dependent manner, whereas with DU145 cells the effect was independent of IGF receptor activation. This IGF-independent effect of IGFBP-2 was mediated by interaction with ÎČ-1-containing integrins and a consequent increase in PTEN phosphorylation. We also determined that silencing IGFBP-2 in both cell lines increased the sensitivity of the cells to docetaxel. Conclusion: The IGFBP-2 has a key role in the growth of prostate cancer cells, and silencing IGFBP-2 expression reduced the resistance of these cells to docetaxel. Targeting IGFBP-2 may increase the efficacy of docetaxel.7 page(s
Ionizing Radiation-Induced Oxidative Stress Alters miRNA Expression
). treatment, and 45 after etoposide treatment. Substantial overlap between the miRNA expression changes between agents was observed suggesting a signature miRNA response to cell stress. Changes in the expression of selected miRNA species varied in response to radiation dose and time. Finally, production of reactive oxygen species (ROS) increased with increasing doses of radiation and pre-treatment with the thiol antioxidant cysteine decreased both ROS production and the miRNA response to radiation., and etoposide. Additionally, pre-treatment with cysteine prevented radiation-induced alterations in miRNA expression which suggests that miRNAs are responsive to oxidative stress. Taken together, these results imply that miRNAs play a role in cellular defense against exogenous stress and are involved in the generalized cellular response to genotoxic oxidative stress
Role of Soluble Epoxide Hydrolase in Postischemic Recovery of Heart Contractile Function
Cytochrome P450 epoxygenases metabolize arachidonic acid to epoxyeicosatrienoic acids (EETs) which are converted to dihydroxyeicosatrienoic acids (DHETs) by soluble epoxide hydrolase (Ephx2, sEH). To examine the functional role of sEH in the heart, mice with targeted disruption of the Ephx2 gene were studied. Hearts from sEH null mice have undetectable levels of sEH mRNA and protein and cannot convert EETs to DHETs. sEH null mice have normal heart anatomy and basal contractile function, but have higher fatty acid epoxide:diol ratios in plasma and cardiomyocyte cell culture media compared with wild type (WT). sEH null hearts have improved recovery of left ventricular developed pressure (LVDP) and less infarction compared with WT hearts after 20 minutes ischemia. Perfusion with the putative EET receptor antagonist 14,15-epoxyeicosa-5(Z)-enoic acid (10 to 100 nmol/L) before ischemia abolishes this cardioprotective phenotype. Inhibitor studies demonstrate that perfusion with phosphatidylinositol-3 kinase (PI3K) inhibitors wortmannin (200 nmol/L) or LY294002 (5 ÎŒmol/L), the ATP-sensitive K+ channel (KATP) inhibitor glibenclamide (1 ÎŒmol/L), the mitochondrial KATP (mitoKATP) inhibitor 5-hydroxydecanoate (100 to 200 ÎŒmol/L), or the Ca2+-sensitive K+ channel (KCa) inhibitor paxilline (10 ÎŒmol/L) abolishes the cardioprotection in sEH null hearts. Consistent with increased activation of the PI3K cascade, sEH null mice exhibit increased cardiac expression of glycogen synthase kinase-3ÎČ (GSK-3ÎČ) phospho-protein after ischemia. Together, these data suggest that targeted disruption of sEH increases the availability of cardioprotective EETs that work by activating PI3K signaling pathways and K+ channels
Two-Photon Fluorescence Microscopy Imaging of Cellular Oxidative Stress Using Profluorescent Nitroxides
A range of varying chromophore nitroxide free radicals and their nonradical methoxyamine analogues were synthesized and their linear photophysical properties examined. The presence of the proximate free radical masks the chromophoreâs usual fluorescence emission, and these species are described as profluorescent. Two nitroxides incorporating anthracene and fluorescein chromophores (compounds 7 and 19, respectively) exhibited two-photon absorption (2PA) cross sections of approximately 400 G.M. when excited at wavelengths greater than 800 nm. Both of these profluorescent nitroxides demonstrated low cytotoxicity toward Chinese hamster ovary (CHO) cells. Imaging colocalization experiments with the commercially available CellROX Deep Red oxidative stress monitor demonstrated good cellular uptake of the nitroxide probes. Sensitivity of the nitroxide probes to H2O2-induced damage was also demonstrated by both one- and two-photon fluorescence microscopy. These profluorescent nitroxide probes are potentially powerful tools for imaging oxidative stress in biological systems, and they essentially âlight upâ in the presence of certain species generated from oxidative stress. The high ratio of the fluorescence quantum yield between the profluorescent nitroxide species and their nonradical adducts provides the sensitivity required for measuring a range of cellular redox environments. Furthermore, their reasonable 2PA cross sections provide for the option of using two-photon fluorescence microscopy, which circumvents commonly encountered disadvantages associated with one-photon imaging such as photobleaching and poor tissue penetration
- âŠ