63 research outputs found

    Antimicrobial Peptides and Skin: A Paradigm of Translational Medicine

    Get PDF
    Antimicrobial peptides (AMPs) are small, cationic, amphiphilic peptides with broad-spectrum microbicidal activity against both bacteria and fungi. In mammals, AMPs form the first line of host defense against infections and generally play an important role as effector agents of the innate immune system. The AMP era was born more than 6 decades ago when the first cationic cyclic peptide antibiotics, namely polymyxins and tyrothricin, found their way into clinical use. Due to the good clinical experience in the treatment of, for example, infections of mucus membranes as well as the subsequent understanding of mode of action, AMPs are now considered for treatment of inflammatory skin diseases and for improving healing of infected wounds. Based on the preclinical findings, including pathobiochemistry and molecular medicine, targeted therapy strategies are developed and first results indicate that AMPs influence processes of diseased skin. Importantly, in contrast to other antibiotics, AMPs do not seem to propagate the development of antibiotic-resistant micro-organisms. Therefore, AMPs should be tested in clinical trials for their efficacy and tolerability in inflammatory skin diseases and chronic wounds. Apart from possible fields of application, these peptides appear suited as an example of the paradigm of translational medicine for skin diseases which is today seen as a `two-way road' - from bench to bedside and backwards from bedside to bench. Copyright (c) 2012 S. Karger AG, Base

    Thyroid Disruption by Di-n-Butyl Phthalate (DBP) and Mono-n-Butyl Phthalate (MBP) in Xenopus laevis

    Get PDF
    BACKGROUND: Di-n-butyl phthalate (DBP), a chemical widely used in many consumer products, is estrogenic and capable of producing seriously reproductive and developmental effects in laboratory animals. However, recent in vitro studies have shown that DBP and mono-n-butyl phthalate (MBP), the major metabolite of DBP, possessed thyroid hormone receptor (TR) antagonist activity. It is therefore important to consider DBP and MBP that may interfere with thyroid hormone system. METHODOLOGY/PRINCIPAL FINDINGS: Nieuwkoop and Faber stage 51 Xenopus laevis were exposed to DBP and MBP (2, 10 or 15 mg/L) separately for 21 days. The two test chemicals decelerated spontaneous metamorphosis in X. laevis at concentrations of 10 and 15 mg/L. Moreover, MBP seemed to possess stronger activity. The effects of DBP and MBP on inducing changes of expression of selected thyroid hormone response genes: thyroid hormone receptor-beta (TRβ), retinoid X receptor gamma (RXRγ), alpha and beta subunits of thyroid-stimulating hormone (TSHα and TSHβ) were detected by qPCR at all concentrations of the compounds. Using mammalian two-hybrid assay in vitro, we found that DBP and MBP enhanced the interactions between co-repressor SMRT (silencing mediator for retinoid and thyroid hormone receptors) and TR in a dose-dependent manner, and MBP displayed more markedly. In addition, MBP at low concentrations (2 and 10 mg/L) caused aberrant methylation of TRβ in head tissue. CONCLUSIONS: The current findings highlight potential disruption of thyroid signalling by DBP and MBP and provide data for human risk assessment

    Iodine species and the endocrine system :Thyroid hormone levels in adult Danio rerio and developing Xenopus laevis.

    No full text
    Recently a new approach for the analysis of iodinated organic species in human serum has been developed using liquid chromatography-inductively coupled plasma-mass spectrometry (LC-ICP-MS). This method enables quantification of iodide, T4 and T3, as well as reverse T3 (rT3) and the synthetic precursors of TH, monoiodotyrosine (MIT), and diiodotyrosine (DIT) in a single injection. In this work, the LC-ICP-MS approach was used to analyze whole-body homogenates of adult male and female zebrafish (Danio rerio) and tadpoles of the African clawed frog (Xenopus laevis) at two different developmental stages (NF58 and 61) according to Nieuwkoop and Faber. The data demonstrate that the LC-ICP-MS method was successful at measuring I-, MIT, DIT, T4, T3, and rT3 in these two species. Furthermore, the method also detected five additional iodinated compounds which are currently unidentified

    Application of genomics to regulatory ecological risk assessments for pesticides

    No full text
    Substantial advances in human health and ecological risk assessment have been achieved by the risk assessment community; however, challenges remain, such as providing credible scientific information on a timely, efficient basis to support decisions for industrial chemicals and pesticides. Current risk assessment data generation requirements-including animal welfare concerns and the volume, appropriateness, and cost of required data-and the large number of chemicals requiring evaluation are a challenge confronting the chemical industry, national and international regulatory agencies, and associated stakeholders (Bradbury et al. 2004). The lack of hazard data for many chemicals and the need to improve the efficiency and quality of risk assessment and management of chemicals are driving forces behind implementation of the Federal Insecticide, Fungicide and Rodenticide Act (FIFRA), the Food Quality Protection Act (FQPA), and European Union (EU) legislation being implemented under the auspices of the registration, evaluation, authorization, and restriction of chemicals (REACH) framework (http://ec.europa.eu/environment/chemicals/reach.htm)
    • …
    corecore