16 research outputs found

    The Gold Rush: A simulated commercial air transportation study

    Get PDF
    The remotely piloted vehicle (RPV) GoldRush was designed to complete the mission of transporting passengers in AeroWorld at a lower cost per seat per thousand feet (CPSPK) than the competition, the HB-40. There were two major factors which were constant considerations in the design process. The cost of manufacturing was the most important. In light of this, the designs were kept as simple as possible while considering trade-offs in performance. For example, the wing was not tapered so that several ribs could be cut at one time. Also of major importance was the takeoff distance. In order to serve all the cities in AeroWorld it was necessary to maintain a takeoff distance requirement of 24 feet. The takeoff distance proved to be the number one force in driving the design process. The Astro 25 engine and 13 inch propellor, a large wing area, and the high lift Wortmann airfoil were all chosen in order to satisfy this objective

    Baylisascaris procyonis: An Emerging Helminthic Zoonosis

    Get PDF
    Baylisascaris procyonis, a roundworm infection of raccoons, is emerging as an important helminthic zoonosis, principally affecting young children. Raccoons have increasingly become peridomestic animals living in close proximity to human residences. When B. procyonis eggs are ingested by a host other than a raccoon, migration of larvae through tissue, termed larval migrans, ensues. This larval infection can invade the brain and eye, causing severe disease and death. The prevalence of B. procyonis infection in raccoons is often high, and infected animals can shed enormous numbers of eggs in their feces. These eggs can survive in the environment for extended periods of time, and the infectious dose of B. procyonis is relatively low. Therefore, the risk for human exposure and infection may be greater than is currently recognized

    A Selective Sweep on a Deleterious Mutation in CPT1A in Arctic Populations.

    Get PDF
    Arctic populations live in an environment characterized by extreme cold and the absence of plant foods for much of the year and are likely to have undergone genetic adaptations to these environmental conditions in the time they have been living there. Genome-wide selection scans based on genotype data from native Siberians have previously highlighted a 3 Mb chromosome 11 region containing 79 protein-coding genes as the strongest candidates for positive selection in Northeast Siberians. However, it was not possible to determine which of the genes might be driving the selection signal. Here, using whole-genome high-coverage sequence data, we identified the most likely causative variant as a nonsynonymous G>A transition (rs80356779; c.1436C>T [p.Pro479Leu] on the reverse strand) in CPT1A, a key regulator of mitochondrial long-chain fatty-acid oxidation. Remarkably, the derived allele is associated with hypoketotic hypoglycemia and high infant mortality yet occurs at high frequency in Canadian and Greenland Inuits and was also found at 68% frequency in our Northeast Siberian sample. We provide evidence of one of the strongest selective sweeps reported in humans; this sweep has driven this variant to high frequency in circum-Arctic populations within the last 6-23 ka despite associated deleterious consequences, possibly as a result of the selective advantage it originally provided to either a high-fat diet or a cold environment.This research was supported by ERC Starting Investigator grant (FP7 - 261213) to T.K. http://erc.europa.eu/. CTS, YX, QA and MS were supported by the Wellcome Trust (098051). TA was supported by The Wellcome Trust (WT100066MA). M.M and R.V. were supported by EU ERDF Centre of Excellence in Genomics to EBC; T.K, M.M and R.V. by Estonian Institutional Research grant (IUT24-1), and M.M by Estonian Science Foundation (grant 8973).This is the accepted manuscript. The final version is available from Cell/Elsevier at http://www.cell.com/ajhg/abstract/S0002-9297%2814%2900422-4

    Genomic analyses inform on migration events during the peopling of Eurasia

    Get PDF
    High-coverage whole-genome sequence studies have so far focused\ud on a limited number1 of geographically restricted populations2–5,\ud or been targeted at specific diseases, such as cancer6. Nevertheless,\ud the availability of high-resolution genomic data has led to the\ud development of new methodologies for inferring population\ud history7–9 and refuelled the debate on the mutation rate in humans10.\ud Here we present the Estonian Biocentre Human Genome Diversity\ud Panel (EGDP), a dataset of 483 high-coverage human genomes\ud from 148 populations worldwide, including 379 new genomes from\ud 125 populations, which we group into diversity and selection\ud sets. We analyse this dataset to refine estimates of continent-wide\ud patterns of heterozygosity, long- and short-distance gene flow, archaic\ud admixture, and changes in effective population size through time as\ud well as for signals of positive or balancing selection. We find a genetic\ud signature in present-day Papuans that suggests that at least 2% of\ud their genome originates from an early and largely extinct expansion\ud of anatomically modern humans (AMHs) out of Africa. Together\ud with evidence from the western Asian fossil record11, and admixture\ud between AMHs and Neanderthals predating the main Eurasian\ud expansion12, our results contribute to the mounting evidence for\ud the presence of AMHs out of Africa earlier than 75,000 years ago

    Genomic analyses inform on migration events during the peopling of Eurasia.

    Get PDF
    High-coverage whole-genome sequence studies have so far focused on a limited number of geographically restricted populations, or been targeted at specific diseases, such as cancer. Nevertheless, the availability of high-resolution genomic data has led to the development of new methodologies for inferring population history and refuelled the debate on the mutation rate in humans. Here we present the Estonian Biocentre Human Genome Diversity Panel (EGDP), a dataset of 483 high-coverage human genomes from 148 populations worldwide, including 379 new genomes from 125 populations, which we group into diversity and selection sets. We analyse this dataset to refine estimates of continent-wide patterns of heterozygosity, long- and short-distance gene flow, archaic admixture, and changes in effective population size through time as well as for signals of positive or balancing selection. We find a genetic signature in present-day Papuans that suggests that at least 2% of their genome originates from an early and largely extinct expansion of anatomically modern humans (AMHs) out of Africa. Together with evidence from the western Asian fossil record, and admixture between AMHs and Neanderthals predating the main Eurasian expansion, our results contribute to the mounting evidence for the presence of AMHs out of Africa earlier than 75,000 years ago.Support was provided by: Estonian Research Infrastructure Roadmap grant no 3.2.0304.11-0312; Australian Research Council Discovery grants (DP110102635 and DP140101405) (D.M.L., M.W. and E.W.); Danish National Research Foundation; the Lundbeck Foundation and KU2016 (E.W.); ERC Starting Investigator grant (FP7 - 261213) (T.K.); Estonian Research Council grant PUT766 (G.C. and M.K.); EU European Regional Development Fund through the Centre of Excellence in Genomics to Estonian Biocentre (R.V.; M.Me. and A.Me.), and Centre of Excellence for Genomics and Translational Medicine Project No. 2014-2020.4.01.15-0012 to EGC of UT (A.Me.) and EBC (M.Me.); Estonian Institutional Research grant IUT24-1 (L.S., M.J., A.K., B.Y., K.T., C.B.M., Le.S., H.Sa., S.L., D.M.B., E.M., R.V., G.H., M.K., G.C., T.K. and M.Me.) and IUT20-60 (A.Me.); French Ministry of Foreign and European Affairs and French ANR grant number ANR-14-CE31-0013-01 (F.-X.R.); Gates Cambridge Trust Funding (E.J.); ICG SB RAS (No. VI.58.1.1) (D.V.L.); Leverhulme Programme grant no. RP2011-R-045 (A.B.M., P.G. and M.G.T.); Ministry of Education and Science of Russia; Project 6.656.2014/K (S.A.F.); NEFREX grant funded by the European Union (People Marie Curie Actions; International Research Staff Exchange Scheme; call FP7-PEOPLE-2012-IRSES-number 318979) (M.Me., G.H. and M.K.); NIH grants 5DP1ES022577 05, 1R01DK104339-01, and 1R01GM113657-01 (S.Tis.); Russian Foundation for Basic Research (grant N 14-06-00180a) (M.G.); Russian Foundation for Basic Research; grant 16-04-00890 (O.B. and E.B); Russian Science Foundation grant 14-14-00827 (O.B.); The Russian Foundation for Basic Research (14-04-00725-a), The Russian Humanitarian Scientific Foundation (13-11-02014) and the Program of the Basic Research of the RAS Presidium “Biological diversity” (E.K.K.); Wellcome Trust and Royal Society grant WT104125AIA & the Bristol Advanced Computing Research Centre (http://www.bris.ac.uk/acrc/) (D.J.L.); Wellcome Trust grant 098051 (Q.A.; C.T.-S. and Y.X.); Wellcome Trust Senior Research Fellowship grant 100719/Z/12/Z (M.G.T.); Young Explorers Grant from the National Geographic Society (8900-11) (C.A.E.); ERC Consolidator Grant 647787 ‘LocalAdaptatio’ (A.Ma.); Program of the RAS Presidium “Basic research for the development of the Russian Arctic” (B.M.); Russian Foundation for Basic Research grant 16-06-00303 (E.B.); a Rutherford Fellowship (RDF-10-MAU-001) from the Royal Society of New Zealand (M.P.C.)

    A recent bottleneck of Y chromosome diversity coincides with a global change in culture

    No full text
    International audienceIt is commonly thought that human genetic diversity in non-African populations was shaped primarily by an out-of-Africa dispersal 50-100 thousand yr ago (kya). Here, we present a study of 456 geographically diverse high-coverage Y chromosome sequences, including 299 newly reported samples. Applying ancient DNA calibration, we date the Y-chromosomal most recent common ancestor (MRCA) in Africa at 254 (95% CI 192-307) kya and detect a cluster of major non-African founder haplogroups in a narrow time interval at 47-52 kya, consistent with a rapid initial colonization model of Eurasia and Oceania after the out-of-Africa bottleneck. In contrast to demographic reconstructions based on mtDNA, we infer a second strong bottleneck in Y-chromosome lineages dating to the last 10 ky. We hypothesize that this bottleneck is caused by cultural changes affecting variance of reproductive success among males
    corecore