426 research outputs found
Optical evidence for a magnetically driven structural transition in the spin web
is a modest frustrated spin system, which undergoes an
anti-ferromagnetic transition at . The anti-ferromagnetic spin
alignment in below is supposed to induce a magneto-elastic
strain of the lattice. The complete absorption spectrum of is
obtained through Kramers-Kronig transformation of the optical reflectivity,
measured from the far-infrared up to the ultraviolet spectral range as a
function of temperature (). Below , we find a new mode at
208 . The spectral weight associated to this additional mode increases
as with decreasing below . The implication of
the optical findings will be discussed in relation to the magnetic phase
transition at .Comment: 9 pages, 3 figure
Excitonic lasing in semiconductor quantum wires
Direct experimental evidences for excitonic lasing is obtained in optically
pumped V-groove quantum wire structures. We demonstrate that laser emission at
a temperature of 10 K arises from a population inversion of localized excitons
within the inhomogenously-broadened luminescence line. At the lasing threshold,
we estimate a maximum exciton density of about 1.8 105cm-1.Comment: 11 pages, 4 figures, submitted to Phys. Rev.
Optical conductivity in the normal state fullerene superconductors
We calculate the optical conductivity, , in the normal state
fullerene superconductors by self-consistently including the impurity
scatterings, the electron-phonon and electron-electron Coulomb interactions.
The finite bandwidth of the fullerenes is explicitely considered, and the
vertex corection is included Nambu in calculating the renormalized
Green's function. is obtained by calculating the
current-current correlation function with the renormalized Green's function in
the Matsubara frequency and then performing analytic continuation to the real
frequency at finite temperature. The Drude weight in is
strongly suppressed due to the interactions and transfered to the mid-infrared
region around and above 0.06 eV which is somewhat less pronounced and much
broader compared with the expermental observation by DeGiorgi .Comment: 6 pages, 4 figures. To be published in Physical Review B, July 1
Optical Probing of Thermal Lattice Fluctuations in Charge-Density-Wave Condensates
Thermal lattice fluctuations in charge-density-wave (CDW) condensates have been studied by means of optical investigations on the prototype CDW compound K0.3MoO3 and its alloys. The temperature dependence of the CDW gap absorption in the mid-IR frequency range is strongly indicative of the important role played by the thermal lattice fluctuation effects. The latter remove the inverse-square-root singularity, expected for the case of the static distorted lattice. In fact, a considerable broadening (i.e., larger than k(B)T) of the subgap tail absorption is found by increasing the temperature towards T(CDW). Moreover, we find that the phase phonon modes also give an important contribution to the disorder parameter, thus being an essential ingredient for the thermal fluctuation effects
Optical Properties of TiN Thin Films close to the Superconductor-Insulator Transition
We present the intrinsic optical properties over a broad spectral range of
TiN thin films deposited on a Si/SiO substrate. We analyze the measured
reflectivity spectra of the film-substrate multilayer structure within a
well-establish procedure based on the Fresnel equation and extract the real
part of the optical conductivity of TiN. We identify the metallic contribution
as well as the finite energy excitations and disentangle the spectral weight
distribution among them. The absorption spectrum of TiN bears some similarities
with the electrodynamic response observed in the normal state of the
high-temperature superconductors. Particularly, a mid-infrared feature in the
optical conductivity is quite reminiscent of a pseudogap-like excitation
Charge dynamics of the spin-density-wave state in BaFeAs
We report on a thorough optical investigation of BaFeAs over a broad
spectral range and as a function of temperature, focusing our attention on its
spin-density-wave (SDW) phase transition at K. While
BaFeAs remains metallic at all temperatures, we observe a depletion in
the far infrared energy interval of the optical conductivity below ,
ascribed to the formation of a pseudogap-like feature in the excitation
spectrum. This is accompanied by the narrowing of the Drude term consistent
with the transport results and suggestive of suppression of scattering
channels in the SDW state. About 20% of the spectral weight in the far infrared
energy interval is affected by the SDW phase transition
Optical investigation of the metal-insulator transition in
We present a comprehensive optical study of the narrow gap
semiconductor. From the optical reflectivity, measured from the far infrared up
to the ultraviolet spectral range, we extract the complete absorption spectrum,
represented by the real part of the complex optical
conductivity. With decreasing temperature below 80 K, we find a progressive
depletion of below cm, the
semiconducting optical gap. The suppressed (Drude) spectral weight within the
gap is transferred at energies and also partially piles up over a
continuum of excitations extending in the spectral range between zero and
. Moreover, the interaction of one phonon mode with this continuum leads
to an asymmetric phonon shape. Even though several analogies between
and were claimed and a Kondo-insulator scenario was also invoked for
both systems, our data on differ in several aspects from those of
. The relevance of our findings with respect to the Kondo insulator
description will be addressed.Comment: 17 pages, 5 figure
Infrared signature of the charge-density-wave gap in ZrTe3
Abstract.: The chain-like ZrTe3 compound undergoes a charge-density-wave (CDW) transition at TCDW=63K, most strongly affecting the conductivity perpendicular to the chains. We measure the temperature (T) dependence of the optical reflectivity from the far infrared up to the ultraviolet with polarized light. The CDW gap Δ(T) along the direction perpendicular to the chains is compatible for T<TCDW with the behavior of an order parameter within the mean-field Bardeen-Cooper-Schrieffer (BCS) theory. Δ(T) also persists well above TCDW, which emphasizes the role played by fluctuation effect
- …