3 research outputs found

    Influence of Nano-/Microfiller Addition on Mechanical and Morphological Performance of Kenaf/Glass Fibre-Reinforced Hybrid Composites

    Get PDF
    Natural-based composite’s progress as carriers has revealed many benefits in biomedicine, notably in the construction field, synthetic biology, and genetic engineering. Compared to analogous composites without nanoparticles, incorporating nanoparticles into polymeric materials improved architectural performance, physiological connections, and ecological features. The major goal of the current investigation is to determine the impact of nano-/micro-TiO2 on the mechanical characteristics of kenaf/glass/epoxy hybrids. The samples have been created using a hand layup method and a variety of filler loading and stacking sequences. The addition of nano-/microfiller significantly improved the mechanical performance of the epoxy/hybrid composite material. It was discovered that nanofiller-added composite materials fared better when composites were compared to and without microfilter-added composites. SEM was used to investigate the microstructure of the interfaces to ensure a good understanding of interfacial adherence between the reinforcement and their matrix. Compared to pure epoxy resin, the 15 wt% of microfiller additions of glass-kenaf-kenaf-glass type composites exhibit a 39.48% improvement in tensile and a 42.88% improvement in flexural. Similarly, 5 wt% nanofiller addition reveals a 44.214% improvement in tensile and a 50.50% improvement in flexural

    Development of Active CO2 Emission Control for Diesel Engine Exhaust Using Amine-Based Adsorption and Absorption Technique

    No full text
    Diesel-powered transportation is considered an efficient method of transportation; this sees the increase in the demand for the diesel engine. But diesel engines are considered to be one of the largest contributors to environmental pollution. The automobile sector accounts for the second-largest source for increasing CO2 emission globally. In this experiment, a suitable postcombustion treatment to control CO2 emission from IC engine exhaust is developed and tested. This work focuses to control CO2 emission by using the chemical adsorbent technique in diesel engine exhaust. An amine-based liquid is used to adsorb the CO2 molecules first and absorb over the amines from the diesel engine exhaust. Three types of amino solutions (L-alanine, L-aspartic acid, and L-arginine) were prepared for 0.3 mole concentrations, and the CO2 absorption investigation is performed in each solution by passing the diesel exhaust. A suitable CO2 adsorption trap is developed and tested for CO2 absorption. The experiments were performed in a single-cylinder diesel engine under variable load conditions. The eddy current dynamometer is used to apply appropriate loads on the engine based on the settings. The AVL DIGAS analyzer was used to measure the CO2, HC, and CO emissions. An uncertainty analysis is carried out on the experimental results to minimize the errors in the results. The effective CO2 reduction was achieved up to 85%, and simultaneous reduction of HC and CO was also observed

    State-Flow Control Based Multistage Constant-Current Battery Charger for Electric Two-Wheeler

    No full text
    Battery charging is a greater challenge in the emerging electric vehicle domain. A newer multistage constant-current (MSCC) charging technique encompassing state-flow control tool-based design is implemented for charging the battery of an electric two-wheeler. MSCC method allows for faster charging and reduced battery degradation per charge. The designed controller incorporates line current power factor correction, thereby limiting the total harmonic distortion (THD) in line current and reactive power. The control strategy for battery charging has been developed using the state flow chart approach for implementing MSCC. The model has been formulated and implemented in MATLAB/Simulink. The proposed control monitors the state-of-charge (SOC) of the battery, age, and thermal behavior due to the charging strategy. The results show that the proposed charging technique with a state flow control approach gives effective and efficient output with reduced THD. Simulation results disclose that the desired parameters are controllable, stable, and effective within the operational limits
    corecore