2 research outputs found

    Statistical description of capillary-based high-harmonic generation

    No full text
    High-harmonic generation (HHG), where the interaction of high-intensity laser light with matter generates ultrashort XUV pulses, is an attractive option for a table-top source of coherent light at nanometre wavelengths. Its efficiency can be improved by performing the HHG in a gas-filled capillary instead of the more common gas jet or cell due to improved interaction length and phase matching. However, because of the highly nonlinear interaction between pump light, neutral atoms, generated plasma, and XUV radiation in this regime, accurate computer simulations and predictions are highly complex and time consuming

    Statistical analysis of pump-pulse propagation in gas-filled capillaries for high-harmonic generation

    No full text
    Driving high-harmonic generation (HHG) with ultrashort pulses confined to gas-filled capillaries is an efficient method of generating extreme ultraviolet and x-ray radiation. In-situ pulse compression can significantly enhance HHG efficiency [1] but requires operation in the high-ionisation limit, leading to high sensitivity to initial conditions and causing the Gaussian driving pulse to break up into a train of subpulses as it propagates. Our previous studies [1,2] have focused on the most intense subpulse, which can be very short (<10 fs). Here, we perform statistical analysis of all pulse components predicted by numerical simulation, including the contribution of the weaker subpulses, with the aim of predicting generated HHG profiles
    corecore