797 research outputs found

    Evolutionary implications of a high selfing rate in the freshwater snail Lymnaea truncatula.

    Get PDF
    Self-compatible hermaphroditic organisms that mix self-fertilization and outcrossing are of great interest for investigating the evolution of mating systems. We investigate the evolution of selfing in Lymnaea truncatula, a self-compatible hermaphroditic freshwater snail. We first analyze the consequences of selfing in terms of genetic variability within and among populations and then investigate how these consequences along with the species ecology (harshness of the habitat and parasitism) might govern the evolution of selfing. Snails from 13 localities (classified as temporary or permanent depending on their water availability) were sampled in western Switzerland and genotyped for seven microsatellite loci. F(IS) (estimated on adults) and progeny array analyses (on hatchlings) provided similar selfing rate estimates of 80%. Populations presented a low polymorphism and were highly differentiated (F(ST) = 0.58). Although the reproductive assurance hypothesis would predict higher selfing rate in temporary populations, no difference in selfing level was observed between temporary and permanent populations. However, allelic richness and gene diversity declined in temporary habitats, presumably reflecting drift. Infection levels varied but were not simply related to either estimated population selfing rate or to differences in heterozygosity. These findings and the similar selfing rates estimated for hatchlings and adults suggest that within-population inbreeding depression is low in L. truncatula

    High resolution quantum sensing with shaped control pulses

    Full text link
    We investigate the application of amplitude-shaped control pulses for enhancing the time and frequency resolution of multipulse quantum sensing sequences. Using the electronic spin of a single nitrogen vacancy center in diamond and up to 10,000 coherent microwave pulses with a cosine square envelope, we demonstrate 0.6 ps timing resolution for the interpulse delay. This represents a refinement by over 3 orders of magnitude compared to the 2 ns hardware sampling. We apply the method for the detection of external AC magnetic fields and nuclear magnetic resonance signals of carbon-13 spins with high spectral resolution. Our method is simple to implement and especially useful for quantum applications that require fast phase gates, many control pulses, and high fidelity.Comment: 5 pages, 4 figures, plus supplemental materia

    Control of individual electron-spin pairs in an electron-spin bath

    Full text link
    The decoherence of a central electron spin due to the dynamics of a coupled electron-spin bath is a core problem in solid-state spin physics. Ensemble experiments have studied the central spin coherence in detail, but such experiments average out the underlying quantum dynamics of the bath. Here, we show the coherent back-action of an individual NV center on an electron-spin bath and use it to detect, prepare and control the dynamics of a pair of bath spins. We image the NV-pair system with sub-nanometer resolution and reveal a long dephasing time (T2=44(9)T_2^* = 44(9) ms) for a qubit encoded in the electron-spin pair. Our experiment reveals the microscopic quantum dynamics that underlie the central spin decoherence and provides new opportunities for controlling and sensing interacting spin systems

    A robust, scanning quantum system for nanoscale sensing and imaging

    Get PDF
    Controllable atomic-scale quantum systems hold great potential as sensitive tools for nanoscale imaging and metrology. Possible applications range from nanoscale electric and magnetic field sensing to single photon microscopy, quantum information processing, and bioimaging. At the heart of such schemes is the ability to scan and accurately position a robust sensor within a few nanometers of a sample of interest, while preserving the sensor's quantum coherence and readout fidelity. These combined requirements remain a challenge for all existing approaches that rely on direct grafting of individual solid state quantum systems or single molecules onto scanning-probe tips. Here, we demonstrate the fabrication and room temperature operation of a robust and isolated atomic-scale quantum sensor for scanning probe microscopy. Specifically, we employ a high-purity, single-crystalline diamond nanopillar probe containing a single Nitrogen-Vacancy (NV) color center. We illustrate the versatility and performance of our scanning NV sensor by conducting quantitative nanoscale magnetic field imaging and near-field single-photon fluorescence quenching microscopy. In both cases, we obtain imaging resolution in the range of 20 nm and sensitivity unprecedented in scanning quantum probe microscopy

    Hybrid Mechanical Systems

    Full text link
    We discuss hybrid systems in which a mechanical oscillator is coupled to another (microscopic) quantum system, such as trapped atoms or ions, solid-state spin qubits, or superconducting devices. We summarize and compare different coupling schemes and describe first experimental implementations. Hybrid mechanical systems enable new approaches to quantum control of mechanical objects, precision sensing, and quantum information processing.Comment: To cite this review, please refer to the published book chapter (see Journal-ref and DOI). This v2 corresponds to the published versio

    Do Fleas Affect Energy Expenditure of Their Free-Living Hosts?

    Get PDF
    Parasites can cause energetically costly behavioural and immunological responses which potentially can reduce host fitness. However, although most laboratory studies indicate that the metabolic rate of the host increases with parasite infestation, this has never been shown in free-living host populations. In fact, studies thus far have shown no effect of parasitism on field metabolic rate (FMR).We tested the effect of parasites on the energy expenditure of a host by measuring FMR using doubly-labelled water in free-living Baluchistan gerbils (Gerbillus nanus) infested by naturally occurring fleas during winter, spring and summer. We showed for the first time that FMR of free-living G. nanus was significantly and positively correlated with parasite load in spring when parasite load was highest; this relationship approached significance in summer when parasite load was lowest but was insignificant in winter. Among seasons, winter FMRs were highest and summer FMRs were lowest in G. nanus.The lack of parasite effect on FMR in winter could be related to the fact that FMR rates were highest among seasons. In this season, thermoregulatory costs are high which may indicate that less energy could be allocated to defend against parasites or to compensate for other costly activities. The question about the cost of parasitism in nature is now one of the major themes in ecological physiology. Our study supports the hypothesis that parasites can elevate FMR of their hosts, at least under certain conditions. However, the effect is complex and factors such as season and parasite load are involved

    High-sensitivity diamond magnetometer with nanoscale resolution

    Full text link
    We present a novel approach to the detection of weak magnetic fields that takes advantage of recently developed techniques for the coherent control of solid-state electron spin quantum bits. Specifically, we investigate a magnetic sensor based on Nitrogen-Vacancy centers in room-temperature diamond. We discuss two important applications of this technique: a nanoscale magnetometer that could potentially detect precession of single nuclear spins and an optical magnetic field imager combining spatial resolution ranging from micrometers to millimeters with a sensitivity approaching few femtotesla/Hz1/2^{1/2}.Comment: 29 pages, 4 figure

    Universal Vectorial and Ultrasensitive Nanomechanical Force Field Sensor

    Full text link
    Miniaturization of force probes into nanomechanical oscillators enables ultrasensitive investigations of forces on dimensions smaller than their characteristic length scale. Meanwhile it also unravels the force field vectorial character and how its topology impacts the measurement. Here we expose an ultrasensitive method to image 2D vectorial force fields by optomechanically following the bidimensional Brownian motion of a singly clamped nanowire. This novel approach relies on angular and spectral tomography of its quasi frequency-degenerated transverse mechanical polarizations: immersing the nanoresonator in a vectorial force field does not only shift its eigenfrequencies but also rotate eigenmodes orientation as a nano-compass. This universal method is employed to map a tunable electrostatic force field whose spatial gradients can even take precedence over the intrinsic nanowire properties. Enabling vectorial force fields imaging with demonstrated sensitivities of attonewton variations over the nanoprobe Brownian trajectory will have strong impact on scientific exploration at the nanoscale

    Investigation of the electrical conductivity of propylene glycol-based ZnO nanofluids

    Get PDF
    Electrical conductivity is an important property for technological applications of nanofluids that has not been widely studied. Conventional descriptions such as the Maxwell model do not account for surface charge effects that play an important role in electrical conductivity, particularly at higher nanoparticle volume fractions. Here, we perform electrical characterizations of propylene glycol-based ZnO nanofluids with volume fractions as high as 7%, measuring up to a 100-fold increase in electrical conductivity over the base fluid. We observe a large increase in electrical conductivity with increasing volume fraction and decreasing particle size as well as a leveling off of the increase at high volume fractions. These experimental trends are shown to be consistent with an electrical conductivity model previously developed for colloidal suspensions in salt-free media. In particular, the leveling off of electrical conductivity at high volume fractions, which we attribute to counter-ion condensation, represents a significant departure from the "linear fit" models previously used to describe the electrical conductivity of nanofluids
    corecore