3 research outputs found

    Extracellular Vesicles in Cancer

    Get PDF
    Extracellular vesicles (EVs) represent a generic term for all the secreted vesicles, which include exosomes, microvesicles, and apoptotic bodies. EVs are key partners in the intercellular communication and play an essential role in multiple physiological and pathological conditions. EVs are shuttles for cargo molecules, such as RNA (mRNA, microRNA, and other noncoding RNAs), DNA, proteins (receptors, transcription factors, enzymes, and extracellular matrix proteins), and lipids. In pathological states, including cancer, EVs might represent either useful biomarkers or can be used for therapeutic purposes. Moreover, in cancer, it was demonstrated that EVs play an essential role in drug resistance. Here, we review the role played by EVs in the most common forms of cancer, with a special focus on ovarian and breast cancers

    Long-term incubation with CXCL2, but not with CXCL1, alters the kinetics of TRPV1 receptors in cultured dorsal root ganglia neurons

    No full text
    CXCL1 and CXCL2 are homologous chemokines that can be upregulated in different pathological conditions, affecting among other targets, neuronal ionic channels or receptors. TRPV1 is a polymodal nociceptor expressed in both dorsal root and trigeminal ganglia neurons. According to existing data, short-term incubation with CXCL1 can reduce TRPV1 desensitization, however, the long-term modulatory effect of both CXCL1 and CXCL2 on this receptor is less known. In the present study we investigated the influence of overnight incubation with 1.5 nM CXCL1 or CXCL2 on the functioning of TRPV1 receptors expressed in cultured dorsal root ganglia neurons. Calcium imaging and patch-clamp recordings showed that under the same experimental conditions and at the same concentration, only CXCL2 significantly decreased the TRPV1 current and increased its desensitization rate, whereas CXCL1 had no effect. This study proposes a different contribution of CXCL1 and CXCL2 to the modulation of TRPV1-mediated processes, in spite of their highly homologous sequence
    corecore