9 research outputs found
A putative de-N-acetylase of the PIG-L superfamily affects fluoroquinolone tolerance in Pseudomonas aeruginosa.
A major cause of treatment failure of infections caused by Pseudomonas aeruginosa is the presence of antibiotic-insensitive persister cells. The mechanism of persister formation in P. aeruginosa is largely unknown and so far only few genetic determinants have been linked to P. aeruginosa persistence. Based on a previous high-throughput screening, we here present dnpA (de-N-acetylase involved in persistence; gene locus PA14_66140/PA5002) as a new gene involved in non-inherited fluoroquinolone tolerance in P. aeruginosa. Fluoroquinolone tolerance of a dnpA mutant is strongly reduced both in planktonic culture and in a biofilm model whereas overexpression of dnpA in the wild-type strain increases the persister fraction. In addition, the susceptibility of the dnpA mutant to different classes of antibiotics is not affected. dnpA is part of the conserved LPS core oligosaccharide biosynthesis gene cluster. Based on primary sequence analysis, we predict that DnpA is a de-N-acetylase, acting on an unidentified substrate. Site-directed mutagenesis suggests that this enzymatic activity is essential for DnpA-mediated persistence. A transcriptome analysis indicates that DnpA primarily affects the expression of genes involved in surface-associated processes. We discuss the implications of these findings for future anti-persister therapies targeted at chronic P. aeruginosa infections
Evolutionary causes and consequences of bacterial antibiotic persistence
Antibiotic treatment failure is of growing concern. Genetically encoded resistance is key in driving this process. However, there is increasing evidence that bacterial antibiotic persistence, a non-genetically encoded and reversible loss of antibiotic susceptibility, contributes to treatment failure and emergence of resistant strains as well. In this Review, we discuss the evolutionary forces that may drive the selection for antibiotic persistence. We review how some aspects of antibiotic persistence have been directly selected for whereas others result from indirect selection in disparate ecological contexts. We then discuss the consequences of antibiotic persistence on pathogen evolution. Persisters can facilitate the evolution of antibiotic resistance and virulence. Finally, we propose practical means to prevent persister formation and how this may help to slow down the evolution of virulence and resistance in pathogens