15 research outputs found

    The Role of Physical, Chemical, and Microbial Heterogeneity on the Field-Scale Transport and Attachment of Bacteria

    Get PDF
    A field-scale bacterial transport experiment was conducted at the Narrow Channel Focus Area of the South Oyster field site located in Oyster, Virginia. The goal of the field experiment was to determine the relative influence of subsurface heterogeneity and microbial population parameters on flow direction, velocity, and attachment of bacteria at the field scale. The field results were compared with results from laboratory-scale column experiments to develop a method for predicting field-scale bacterial transport. The field site is a shallow, sandy, unconfined, aerobic aquifer that has been characterized by geophysical, sedimentological, and hydrogeological methods. Comamonas sp. strain DA001 and a conservative tracer, bromide (Br), were injected into an area of high permeability for 12 hours. The Br and bacterial concentrations in the groundwater were monitored for 1 week at 192 sampling ports spaced over a 2-m vertical zone located from 0.5 to 7 m down-gradient of the injection well. The bacterial and Br plume was observed to move past 95 sampling ports. The densely characterized field site enabled the comparison of variations in DA001 transport to the aquifer properties. The velocity of the injected plume was correlated with geophysical estimates of hydraulic conductivity. The bacterial and Br plume appeared to follow flow paths not coincident with the hydraulic gradient but through a zone of higher permeability located off the flow axis. The amount of breakthrough of the bacteria was similar in both the high and low permeability layers with only a weak correlation between the observed hydraulic conductivity and amount of bacterial breakthrough. The uniformity in the observed attachment rates across varying grain sizes could be explained by heterogeneity of microbial properties within the single strain of injected bacteria. Application of colloid filtration theory to the field data indicated that variations in the microbial population were described by a lognormal distribution of the collision efficiency (a). Core-scale studies were used to predict the a distribution and field-scale transport distances of DA001. In sandy aquifers, physical heterogeneity may play a secondary role in controlling field-scale bacterial transport, and future research should focus on the microbial factors affecting transport

    Distribution and Molecular Weight of Dissolved DNA in Subtropical Estuarine and Oceanic Environments

    Get PDF
    Dissolved DNA and a series of microbial biomass and activity parameters were measured in offshore, coastal, estuarine and coral reef environments of the southeast Gulf of Mexico. Oceanic concentrations of dissolved DNA ranged from 0.2 to 19 μg 1-1 and decreased as a function of distance from shore and depth in the water column. Dissolved DNA concentrations were greater than half the particulate DNA content in offshore environments (̄x̄ = 63 ± 45 %) but were a smaller percentage of particulate DNA in nearshore and estuarine environments (̄x̄ = 35 ± 21 %). Dissolved DNA correlated better with bacterial parameters (i.e. bacterial direct counts, particulate DNA and thymidine incorporation) than with phytoplankton parameters (chlorophyll a, primary productivity). The molecular weight (MW) of dissolved DNA (determined by agarose gel electrophoresis) ranged from 0.12 kilobase pairs (kb; 7.75 X 104 daltons) to 5.2 kb (2.32 X 107daltons) for estuarine samples, while an oligotrophic environment contained smaller MW DNA (range 0.24 to 14.27 kb). DNA fragments in this size range are sufficient to contain gene sequences. These results are discussed in terms of the potential for transformation by dissolved DNA

    Simultaneous Transport of Two Bacterial Strains in Intact Cores from Oyster, Virginia: Biological Effects and Numerical Modeling

    No full text
    The transport characteristics of two adhesion-deficient, indigenous groundwater strains, Comamonas sp. strain DA001 and Erwinia herbicola OYS2-A, were studied by using intact sediment cores (7 by 50 cm) from Oyster, Va. Both strains are gram-negative rods (1.10 by 0.56 and 1.56 by 0.46 μm, respectively) with strongly hydrophilic membranes and a slightly negative surface charge. The two strains exhibited markedly different behaviors when they were transported through granular porous sediment. To eliminate any effects of physical and chemical heterogeneity on bacterial transport and thus isolate the biological effect, the two strains were simultaneously injected into the same core. DA001 cells were metabolically labeled with (35)S and tagged with a vital fluorescent stain, while OYS2-A cells were metabolically labeled with (14)C. The fast decay of (35)S allowed deconvolution of the two isotopes (and therefore the two strains). Dramatic differences in the transport behaviors were observed. The breakthrough of DA001 and the breakthrough of OYS2-A both occurred before the breakthrough of a conservative tracer (termed differential advection), with effluent recoveries of 55 and 30%, respectively. The retained bacterial concentration of OYS2-A in the sediment was twofold higher than that of DA001. Among the cell properties analyzed, the statistically significant differences between the two strains were cell length and diameter. The shorter, larger-diameter DA001 cells displayed a higher effluent recovery than the longer, smaller-diameter OYS2-A cells. CXTFIT modeling results indicated that compared to the DA001 cells, the OYS2-A cells experienced lower pore velocity, higher porosity, a higher attachment rate, and a lower detachment rate. All these factors may contribute to the observed differences in transport
    corecore