134 research outputs found

    Historical changes (1905-2005) in external phosphorus loads to Loch Leven, Scotland, UK

    Get PDF
    This article reviews historical changes in the total phosphorus (TP) inputs to Loch Leven, Scotland, UK. Data derived from palaeolimnological records suggest that inputs in the early 1900s were about 6 t TP year-1 (0.45 g TP m-2 year-1). By 1985, this had risen to about 20 t TP year-1 (1.5 g TP m-2 year-1) due to increases in runoff from agricultural land and discharges from point sources. By the late 1970s, increased TP inputs were causing serious degradation of lake water quality. Most noticeably, there had been an increase in cyanobacterial blooms. A catchment management plan was implemented in the early 1990s. This resulted in a 60% reduction in the annual TP input between 1985 (20 t TP year-1/1.5 g TP m-2 year-1) and 1995 (8 t TP year-1/0.6 g TP m-2 year-1). The main reduction was associated with better control of point source discharges, but attempts were also made to reduce inputs from diffuse sources. The reduction in external TP loading to the lake led to a marked decline in TP retention by the lake each year

    The Effect of Temperature on the Absorption and Fluorescence Spectra of Impurity Crystals

    Get PDF
    A meta-analysis approach was used to assess the effect of dredging induced changes in sediment composition, under different conditions of natural physical disturbance, for the structure and function of marine benthic macrofaunal communities. Results showed the sensitivity of macrofaunal communities increased as both the proportion of gravel increased and the level of natural physical disturbance decreased. These findings may be explained by the close association of certain taxa with the gravel fraction, and the influence of natural physical disturbance which, as it increases, tends to restrict the colonisation by these species. We conclude that maintaining the gravel content of surface sediments after dredging and, where practicable, locating extraction sites in areas of higher natural disturbance will minimise the potential for long-term negative impacts on the macrofauna

    Factors affecting the spatial and temporal distribution of E. coli in intertidal estuarine sediments

    Get PDF
    Funding: University of St Andrews, The James Hutton Institute. DMP received funding from the Marine Alliance for Science and Technology for Scotland (MASTS), funded by the Scottish Funding Council (grant reference HR09011).Microbiological water quality monitoring of bathing waters does not account for faecal indicator organisms in sediments. Intertidal deposits are a significant reservoir of FIOs and this indicates there is a substantial risk to bathers through direct contact with the sediment, or through the resuspension of bacteria to the water column. Recent modelling efforts include sediment as a secondary source of contamination, however, little is known about the driving factors behind spatial and temporal variation in FIO abundance. E. coli abundance, in conjunction with a wide range of measured variables, was used to construct models to explain E. coli abundance in intertidal sediments in two Scottish estuaries. E. coli concentrations up to 6 log10 CFU 100 g dry wt-1 were observed, with optimal models accounting for E. coli variation up to an adjusted R2 of 0.66. Introducing more complex models resulted in overfitting of models, detrimentally effected the transferability of models between datasets. Salinity was the most important single variable, with season, pH, colloidal carbohydrates, organic content, bulk density and maximum air temperature also featuring in optimal models. Transfer of models, using only lower cost variables, between systems explained an average deviance of 42 %. This study demonstrates the potential for cost-effective sediment characteristic monitoring to contribute to FIO fate and transport modelling and consequently the risk assessment of bathing water safety.PostprintPeer reviewe

    The role of zeta potential in the adhesion of E. coli to suspended intertidal sediments

    Get PDF
    This research was funded by The James Hutton Institute and the University of St Andrews. DMP received funding from the Marine Alliance for Science and Technology for Scotland (MASTS), funded by the Scottish Funding Council (grant reference HR09011).The extent of pathogen transport to and within aquatic systems depends heavily on whether the bacterial cells are freely suspended or in association with suspended particles. The surface charge of both bacterial cells and suspended particles affects cell-particle adhesion and subsequent transport and exposure pathways through settling and resuspension cycles. This study investigated the adhesion of Faecal Indicator Organisms (FIOs) to natural suspended intertidal sediments over the salinity gradient encountered at the transition zone from freshwater to marine environments. Phenotypic characteristics of three E. coli strains, and the zeta potential (surface charge) of the E. coli strains and 3 physically different types of intertidal sediments was measured over a salinity gradient from 0 – 5 Practical Salinity Units (PSU). A batch adhesion microcosm experiment was constructed with each combination of E. coli strain, intertidal sediment and 0, 2, 3.5 and 5 PSU. The zeta potential profile of one E. coli strain had a low negative charge and did not change in response to an increase in salinity, and the remaining E. coli strains and the sediments exhibited a more negative charge that decreased with an increase in salinity. Strain type was the most important factor in explaining cell-particle adhesion, however adhesion was also dependant on sediment type and salinity (2, 3.5 PSU > 0, 5 PSU). Contrary to traditional colloidal (Derjaguin, Landau, Vervey, and Overbeek (DLVO)) theory, zeta potential of strain or sediment did not correlate with cell-particle adhesion. E. coli strain characteristics were the defining factor in cell-particle adhesion, implying that diverse strain-specific transport and exposure pathways may exist. Further research applying these findings on a catchment scale is necessary to elucidate these pathways in order to improve accuracy of FIO fate and transport models.PostprintPeer reviewe

    Nonlinear empirical modeling to estimate phosphorus exports using continuous records of turbidity and discharge

    Get PDF
    Special section: Continuous nutrient sensing in research and management: applications and lessons learned across aquatic environments and watershedsInternational audienceWe tested an empirical modeling approach using relatively low‐cost continuous records of turbidity and discharge as proxies to estimate phosphorus (P) concentrations at a subhourly time step for estimating loads. The method takes into account nonlinearity and hysteresis effects during storm events, and hydrological conditions variability. High‐frequency records of total P and reactive P originating from four contrasting European agricultural catchments in terms of P loads were used to test the method. The models were calibrated on weekly grab sampling data combined with 10 storms surveyed subhourly per year (weekly+ survey) and then used to reconstruct P concentrations during all storm events for computing annual loads. For total P, results showed that this modeling approach allowed the estimation of annual loads with limited uncertainties (≈ −10% ± 15%), more reliable than estimations based on simple linear regressions using turbidity, based on interpolated weekly+ data without storm event reconstruction, or on discharge weighted calculations from weekly series or monthly series. For reactive P, load uncertainties based on the nonlinear model were similar to uncertainties based on storm event reconstruction using simple linear regression (≈ 20% ± 30%), and remained lower than uncertainties obtained without storm reconstruction on weekly or monthly series, but larger than uncertainties based on interpolated weekly+ data (≈ −15% ± 20%). These empirical models showed we could estimate reliable P exports from noncontinuous P time series when using continuous proxies, and this could potentially be very useful for completing time‐series data sets in high‐frequency surveys, even over extended periods

    Applicability of the “Frame of Reference” approach for environmental monitoring of offshore renewable energy projects

    Get PDF
    This paper assesses the applicability of the Frame of Reference (FoR) approach for the environmental monitoring of large-scale offshore Marine Renewable Energy (MRE) projects. The focus is on projects harvesting energy from winds, waves and currents. Environmental concerns induced by MRE projects are reported based on a classification scheme identifying stressors, receptors, effects and impacts. Although the potential effects of stressors on most receptors are identified, there are large knowledge gaps regarding the corresponding (positive and negative) impacts. In that context, the development of offshore MRE requires the implementation of fit-for-purpose monitoring activities aimed at environmental protection and knowledge development. Taking European legislation as an example, it is suggested to adopt standardized monitoring protocols for the enhanced usage and utility of environmental indicators. Towards this objective, the use of the FoR approach is advocated since it provides guidance for the definition and use of coherent set of environmental state indicators. After a description of this framework, various examples of applications are provided considering a virtual MRE project located in European waters. Finally, some conclusions and recommendations are provided for the successful implementation of the FoR approach and for future studies.info:eu-repo/semantics/publishedVersio
    corecore