15 research outputs found

    Topological and metrical property characterization of radical subunits for ternary hard sphere crystals

    No full text
    Quantitative characterization on the topological and metrical properties of radical subunits (polyhedra) for two new ternary hard sphere crystals was studied. These two ideal crystalline structures are numerically constructed by filling small and medium spheres into interstices (corresponding to regular tetrahedral and octahedral pores) of perfect face centered cubic (FCC) and hexagonal close packed (HCP) crystals formed by the packing of large spheres. Topological properties such as face number, edge number, vertex number of each radical polyhedron (RP), edge number of each RP face and metrical properties such as volume, surface area, total perimeter and pore volume of each RP, area and perimeter of each RP face were analyzed and compared. The results show that even though the overall packing densities for FCC and HCP ternary crystals are the same, different characteristics of radical polyhedra for corresponding spheres in these two crystals can be identified. That is, in the former structure RPs are more symmetric than those in the latter; the orientations of corresponding RP in the latter are twice as many as that in the former. Moreover, RP topological and metrical properties in the HCP ternary crystal are much more complicated than those in the FCC ternary crystal. These differences imply the structure and property differences of these two ternary crystals. Analyses of RPs provide intensive understanding of pores in the structure

    Particulate Scale Numerical Investigation on the Compaction of TiC-316L Composite Powders

    No full text
    This paper presents a numerical investigation on the 2D uniaxial die compaction of TiC-316L stainless steel (abbreviated by 316L) composite powders by the multiparticle finite element method (MPFEM). The effects of TiC-316L particle size ratios, TiC contents, and initial packing structures on the compaction process are systematically characterized and analyzed from macroscale and particulate scale. Numerical results show that different initial packing structures have significant impacts on the densification process of TiC-316L composite powders; a denser initial packing structure with the same composition can improve the compaction densification of TiC-316L composite powders. Smaller size ratio of 316L and TiC particles (R316L/RTiC = 1) will help achieve the green compact with higher relative density as the TiC content and compaction pressure are fixed. Meanwhile, increasing TiC content reduces the relative density of the green compact. In the dynamic compaction process, the void filling is mainly completed by particle rearrangement and plastic deformation of 316L particles. Furthermore, the contacted TiC particles will form the force chains impeding the densification process and cause the serious stress concentration within them. Increasing TiC content and R316L/RTiC can create larger stresses in the compact. The results provide valuable information for the formation of high-quality TiC-316L compacts in PM process

    DEM construction of binary hard sphere crystals and radical tessellation

    No full text
    In this paper, four binary hard sphere crystals were numerically constructed by discrete element method (DEM) through different packing modes under three-dimensional (3D) mechanical vibration. For each crystal, a modified Voronoi tessellation method (called radical tessellation) was utilized to quantitatively investigate the topological and metrical properties of radical polyhedra (RPs). The topological properties such as the number of faces, edges, vertices per RP and the number of edges per RP face as well as the metrical properties such as perimeter, surface area, volume, and relative pore size per RP were systematically characterized and compared. Meanwhile, the mechanism of the binary hard sphere crystallization was also investigated. The results show that the packing sequence and pattern of the large spheres can determine the structure of the binary hard sphere crystal. The RP structures and their metrical and topological properties of the four binary hard sphere crystals (even the packing density of the two crystals is the same) are quite different. Each property can clearly reflect the specific characteristics of the corresponding binary hard sphere crystalline structure. The obtained quantitative results would be useful for the deep understanding of the structure and resultant properties of binary hard sphere crystals

    Seepage process on weathered crust elution-deposited rare earth ores with ammonium carboxylate solution

    No full text
    In order to reveal the seepage law of ammonium carboxylate solution in the in-situ leaching process of weathered crust elution-deposited rare earth ores, the effects of concentration, pH, temperature, particle size and porosity on permeability were discussed in this paper. The results shown that the seepage of the leaching agent solutions in the rare earth ore follows Darcy's law and displays a laminar flow under the conditions of this experiment and seepage velocity can be increased by changing leaching conditions. The permeability coefficients are inversely proportional to concentrations of ammonium acetate, ammonium tartrate and ammonium citrate whose concentration is greater than 0.7wt%, because the insoluble complexes formed by the reaction of ammonium citrate with RE3+ at lower concentration n decrease the permeability coefficient. The permeability coefficients of ammonium carboxylate solutions increase firstly and then decrease with the pH increased. The maximum of permeability coefficients of ammonium acetate, ammonium tartrate and ammonium citrate solution were 2.92, 1.91 and 2.70, respectively, while the pH of solution were 5, 6 and 7, respectively. Increasing temperature is beneficial for the seepage of ammonium carboxylate solution in orebody, therefore, it is helpful for leaching operation in summer. Moreover, clay minerals particle size and porosity are the key factors affecting the permeability of ammonium carboxylate solution in orebody. The permeability coefficients of ammonium acetate, ammonium tartrate and ammonium citrate solutions are 2.92×104cm/s,1.90×10-4cm/s and 2.69×10-4cm/s, respectively, at the same temperature of 293K, original particle size and porosity of the ore. Ammonium acetate solution has the best permeability in orebody

    Precise Orbit Determination and Accuracy Analysis for BDS-3 Satellites Using SLR Observations

    No full text
    Satellite laser ranging (SLR) is the space geodetic technique with the highest degree of range, measuring precision and distances right down to the millimeter level. Thanks to the improvement of SLR station layouts and the advance of SLR technology, in recent years, more research has been conducted to determine Global Navigation Satellite System (GNSS) satellite orbits using SLR data. The primary goal of this contribution is to investigate the accuracy of BeiDou Navigation-3 (BDS-3) Satellite precise orbit determination (POD) using solely SLR data, as well as explore the impact of various factors on that accuracy. Firstly, we used actual SLR data to make the POD for BDS-3 satellites, and the POD accuracy was positively connected with the orbital arc lengths. The 9-day median root mean square (RMS) in radial (R), along-track (T), and cross-track (N) directions were estimated at 4.7–8.2, 22.1–35.2, and 27.4–43.8 cm, respectively, for comparison with WUM precise orbits. Then, we explored the impact of SLR observations and stations on POD accuracy. For 9-day orbital arc lengths, five station or 20 observation arcs may offer an orbit with a 1 m precision. Six to eight stations or 30–35 observation arcs allow an improved orbit accuracy up to approximately 0.5 m. Furthermore, we examined how measurement errors and orbit modeling errors affect the SLR-only POD accuracy using simulated SLR data. For orbital arc lengths of 9 days, each cm of random error leads to a 9.3–11.0 cm decrease in orbit accuracy. The accuracy of an orbit is reduced by 10.1–15.0 cm for every 1 cm of systematic error. Moreover, for solar radiation pressure (SRP) errors, the effect of POD accuracy is 20.5–45.1 cm, respectively

    The discovery of high affinity and metabolically stable allosteric cyclin-dependent kinase 2 (CDK2) inhibitors from screening through lead optimization

    No full text
    Despite the status of cyclin-dependent kinase 2 (CDK2) as a validated target for both anticancer and contraceptive indications, a CDK2 inhibitor with exquisite selectivity has been historically challenging, largely due to the structural similarity of the ATP-binding site where most kinase inhibitors bind. We previously discovered an allosteric pocket in CDK2 with potential to bind a compound with desirable selectivity. Using high-throughput and virtual screening methods, we discovered and structurally confirmed an anthranilic acid scaffold that binds this pocket with high affinity. We previously reported that these allosteric CDK2 inhibitors demonstrate a negative cooperative relationship with cyclin binding, are selective for CDK2 over the structurally similar kinase CDK1 and show potential as a non-hormonal contraceptive agent. In this work, we describe our screening and lead optimization efforts that led to the discovery of compounds in this series like EF-4-177 with nanomolar affinity for CDK2. EF-4-177 is metabolically stable with a desirably long ½ life and adequate tissue distribution in mice, demonstrating the potential of this series as a therapeutic. This work details the discovery of the highest affinity allosteric CDK inhibitors reported and shows promise for further development of this series to yield an efficacious and selective allosteric CDK2 inhibitor
    corecore