17 research outputs found
Effect of Soluble ICAM-1 on a Sjögren's Syndrome-like Phenotype in NOD Mice Is Disease Stage Dependent
Intercellular adhesion molecule-1 (ICAM-1) is involved in migration and co-stimulation of T and B cells. Membrane bound ICAM-1 is over expressed in the salivary glands (SG) of Sjögren's syndrome (SS) patients and has therefore been proposed as a potential therapeutic target. To test the utility of ICAM-1 as a therapeutic target, we used local gene therapy in Non Obese Diabetic (NOD) mice to express soluble (s)ICAM-1 to compete with membrane bound ICAM-1 for binding with its receptor. Therapy was given prior to and just after the influx of immune cells into the SG.A recombinant serotype 2 adeno associated virus (rAAV2) encoding ICAM-1/Fc was constructed and its efficacy tested in the female NOD mice after retrograde instillation in SG at eight (early treatment) and ten (late treatment) weeks of age. SG inflammation was evaluated by focus score and immunohistochemical quantification of infiltrating cell types. Serum and SG tissue were analyzed for immunoglobulins (Ig).Early treatment with ICAM-1/Fc resulted in decreased average number of inflammatory foci without changes in T and B cell composition. In contrast, late treated mice did not show any change in focus scores, but immunohistochemical staining showed an increase in the overall number of CD4+ and CD8+ T cells. Moreover, early treated mice showed decreased IgM within the SGs, whereas late treated mice had increased IgM levels, and on average higher IgG and IgA.Blocking the ICAM-1/LFA-1 interaction with sICAM-1/Fc may result in worsening of a SS like phenotype when infiltrates have already formed within the SG. As a treatment for human SS, caution should be taken targeting the ICAM-1 axis since most patients are diagnosed when inflammation is clearly present within the SG
Requirements for ICAM-1 immunogene therapy of lymphoma.
Intercellular cell adhesion molecule-1 (ICAM-1) is a cell-surface glycoprotein capable of eliciting bidirectional signals that activate signalling pathways in leukocytes, endothelial, and smooth muscle cells. Gene transfer of xenogeneic ICAM-1 into EL-4 lymphomas causes complete tumor rejection; however, it is unknown whether the mechanism responsible involves the "foreignness" of the ICAM-1 transgene, bidirectional signalling events, ICAM-1-receptor interaction, or a combination of the latter. To begin to address this question, we constructed four different therapeutic expression vectors encoding full-length ICAM-1, and forms in which the N-terminal ligand-binding domains and cytoplasmic tail had been deleted. Mouse EL-4 tumors (0.5 cm in diameter), which actively suppress the immune response, were significantly inhibited in their growth following injection of expression plasmids encoding either full-length xenogenic (human) ICAM-1, or a functional cytoplasmic domain-deficient form that retains ligand-binding activity. Efficacy of ICAM-1-mediated antitumor immunity was significantly augmented by administration of the antivascular drug 5,6-dimethylxanthenone-4-acetic acid (DMXAA), which suppressed blood supply to the tumor, leading to enhanced leukocyte infiltration, and complete tumor eradication in a gene dosage and CD8(+) T cell and NK cell-dependent fashion. Generation of potent cytotoxic T cell (CTL)-mediated antitumor immunity was reflected by ICAM-1-facilitated apoptosis of tumor cells in situ. In contrast, nonfunctional ICAM-1 lacking the N-terminal ligand-binding Ig domain failed to generate antitumor immunity, even in the presence of DMXAA. These studies demonstrate that ICAM-1-stimulated antitumor immunity can overcome tumor-mediated immunosuppression, particularly when employed in combination with an attack on the tumor vasculature. The ligand-binding domain of ICAM-1 is essential for generating antitumor immunity, whereas the cytoplasmic domain and bidirectional activation of tumor signalling pathways are not essential.<br /
The role of CD8+ T cells during allograft rejection
Organ transplantation can be considered as replacement therapy for patients with end-stage organ failure. The percent of one-year allograft survival has increased due, among other factors, to a better understanding of the rejection process and new immunosuppressive drugs. Immunosuppressive therapy used in transplantation prevents activation and proliferation of alloreactive T lymphocytes, although not fully preventing chronic rejection. Recognition by recipient T cells of alloantigens expressed by donor tissues initiates immune destruction of allogeneic transplants. However, there is controversy concerning the relative contribution of CD4+ and CD8+ T cells to allograft rejection. Some animal models indicate that there is an absolute requirement for CD4+ T cells in allogeneic rejection, whereas in others CD4-depleted mice reject certain types of allografts. Moreover, there is evidence that CD8+ T cells are more resistant to immunotherapy and tolerance induction protocols. An intense focal infiltration of mainly CD8+CTLA4+ T lymphocytes during kidney rejection has been described in patients. This suggests that CD8+ T cells could escape from immunosuppression and participate in the rejection process. Our group is primarily interested in the immune mechanisms involved in allograft rejection. Thus, we believe that a better understanding of the role of CD8+ T cells in allograft rejection could indicate new targets for immunotherapy in transplantation. Therefore, the objective of the present review was to focus on the role of the CD8+ T cell population in the rejection of allogeneic tissue