20 research outputs found

    Overview of C3 Glomerulopathy

    Get PDF

    Safety of onasemnogene abeparvovec for patients with spinal muscular atrophy 8.5 kg or heavier in a Global Managed Access Program

    Get PDF
    BACKGROUND: Spinal muscular atrophy is a rare, neurodegenerative disorder caused by biallelic deletions in the survival motor neuron (SMN1) gene. Onasemnogene abeparvovec is a one-time, intravenous gene replacement therapy designed to deliver the SMN1 transgene. Although available in many geographies, it is not approved globally. The Global Managed Access Program (GMAP) expanded treatment access to patients in countries where treatment was not approved. Previous onasemnogene abeparvovec clinical trials included patients with body weight \u3c8.5 kg. Through GMAP, children weighing ≥8.5 kg received onasemnogene abeparvovec. We describe safety data for heavier patients in GMAP. METHODS: GMAP records were reviewed to identify patients weighing ≥8.5 kg at onasemnogene abeparvovec dosing. To obtain corresponding adverse event (AE) data, the Novartis ARGUS safety database was searched using patient identification numbers and birth dates/dosing dates for any reported AE for GMAP patients. RESULTS: As of September 2, 2021, 102 patients weighing ≥8.5 kg at time of dosing were identified. Fifty-four (53%) had one or more reported AEs. Three patients were reported to be deceased. All three deaths were assessed to be secondary to acute respiratory events. Most (62%) AEs were non-serious. The most frequently reported AEs included increases in hepatic laboratory values, decreased platelets and thrombocytopenia, pyrexia, vomiting, and decreased appetite. CONCLUSIONS: Safety findings for patients weighing ≥8.5 kg administered onasemnogene abeparvovec through GMAP were consistent with those described in clinical trials and included hepatotoxicity, thrombotic microangiopathy, and thrombocytopenia

    Thrombotic microangiopathy following onasemnogene abeparvovec for spinal muscular atrophy: A case series

    Get PDF
    Spinal muscular atrophy is treated with onasemnogene abeparvovec, which replaces the missing survival motor neuron 1 gene via an adeno-associated virus vector. As of July 1, 2020, we had identified 3 infants who developed thrombotic microangiopathy following onasemnogene abeparvovec. Early recognition and treatment of drug-induced thrombotic microangiopathy may lessen mortality and morbidity

    Clinical Trial and Postmarketing Safety of Onasemnogene Abeparvovec Therapy

    Get PDF
    INTRODUCTION: This is the first description of safety data for intravenous onasemnogene abeparvovec, the only approved systemically administered gene-replacement therapy for spinal muscular atrophy. OBJECTIVE: We comprehensively assessed the safety of intravenous onasemnogene abeparvovec from preclinical studies, clinical studies, and postmarketing data. METHODS: Single-dose toxicity studies were performed in neonatal mice and juvenile or neonatal cynomolgus nonhuman primates (NHPs). Data presented are from a composite of preclinical studies, seven clinical trials, and postmarketing sources (clinical trials, n = 102 patients; postmarketing surveillance, n = 665 reported adverse event [AE] cases). In clinical trials, safety was assessed through AE monitoring, vital-sign and cardiac assessments, laboratory evaluations, physical examinations, and concomitant medication use. AE reporting and available objective clinical data from postmarketing programs were evaluated. RESULTS: The main target organs of toxicity in mice were the heart and liver. Dorsal root ganglia (DRG) inflammation was observed in NHPs. Patients exhibited no evidence of sensory neuropathy upon clinical examination. In clinical trials, 101/102 patients experienced at least one treatment-emergent AE. In total, 50 patients experienced serious AEs, including 11 considered treatment related. AEs consistent with hepatotoxicity resolved with prednisolone in clinical trials. Transient decreases in mean platelet count were detected but were without bleeding complications. Thrombotic microangiopathy (TMA) was observed in the postmarketing setting. No evidence of intracardiac thrombi was observed for NHPs or patients. CONCLUSIONS: Risks associated with onasemnogene abeparvovec can be anticipated, monitored, and managed. Hepatotoxicity events resolved with prednisolone. Thrombocytopenia was transient. TMA may require medical intervention. Important potential risks include cardiac AEs and DRG toxicity

    Clinical trial and postmarketing safety of onasemnogene abeparvovec therapy

    Get PDF
    INTRODUCTION: This is the first description of safety data for intravenous onasemnogene abeparvovec, the only approved systemically administered gene-replacement therapy for spinal muscular atrophy. OBJECTIVE: We comprehensively assessed the safety of intravenous onasemnogene abeparvovec from preclinical studies, clinical studies, and postmarketing data. METHODS: Single-dose toxicity studies were performed in neonatal mice and juvenile or neonatal cynomolgus nonhuman primates (NHPs). Data presented are from a composite of preclinical studies, seven clinical trials, and postmarketing sources (clinical trials, n = 102 patients; postmarketing surveillance, n = 665 reported adverse event [AE] cases). In clinical trials, safety was assessed through AE monitoring, vital-sign and cardiac assessments, laboratory evaluations, physical examinations, and concomitant medication use. AE reporting and available objective clinical data from postmarketing programs were evaluated. RESULTS: The main target organs of toxicity in mice were the heart and liver. Dorsal root ganglia (DRG) inflammation was observed in NHPs. Patients exhibited no evidence of sensory neuropathy upon clinical examination. In clinical trials, 101/102 patients experienced at least one treatment-emergent AE. In total, 50 patients experienced serious AEs, including 11 considered treatment related. AEs consistent with hepatotoxicity resolved with prednisolone in clinical trials. Transient decreases in mean platelet count were detected but were without bleeding complications. Thrombotic microangiopathy (TMA) was observed in the postmarketing setting. No evidence of intracardiac thrombi was observed for NHPs or patients. CONCLUSIONS: Risks associated with onasemnogene abeparvovec can be anticipated, monitored, and managed. Hepatotoxicity events resolved with prednisolone. Thrombocytopenia was transient. TMA may require medical intervention. Important potential risks include cardiac AEs and DRG toxicity

    Hemodialysis vascular access options in pediatrics: considerations for patients and practitioners

    Get PDF
    Recent data indicate that the incidence of end-stage renal disease (ESRD) in pediatric patients (age 0–19 years) has increased over the past two decades. Similarly, the prevalence of ESRD has increased threefold over the same period. Hemodialysis (HD) continues to be the most frequently utilized modality for renal replacement therapy in incident pediatric ESRD patients. The number of children on HD exceeded the sum total of those on peritoneal dialysis and those undergoing pre-emptive renal transplantation. Choosing the best vascular access option for pediatric HD patients remains challenging. Despite a national initiative for fistula first in the adult hemodialysis population, the pediatric nephrology community in the United States of America utilizes central venous catheters as the primary dialysis access for most patients. Vascular access management requires proper advance planning to assure that the best permanent access is placed, seamless communication involving a multidisciplinary team of nephrologists, nurses, surgeons, and interventional radiologists, and ongoing monitoring to ensure a long life of use. It is imperative that practitioners have a long-term vision to decrease morbidity in this unique patient population. This article reviews the various types of pediatric vascular accesses used worldwide and the benefits and disadvantages of these various forms of access

    The quality of cardiovascular disease care for adolescents with kidney disease: a Midwest Pediatric Nephrology Consortium study

    Get PDF
    Cardiovascular disease is the leading cause of increased mortality for adolescents with advanced kidney disease. The quality of preventive cardiovascular care may impact long-term outcomes for these patients

    Gaining the PROMIS perspective from children with nephrotic syndrome: a Midwest pediatric nephrology consortium study

    Get PDF
    Background and objectives Nephrotic syndrome (NS) represents a common disease in pediatric nephrology typified by a relapsing and remitting course and characterized by the presence of edema that can significantly affect the health-related quality of life in children and adolescents. The PROMIS pediatric measures were constructed to be publically available, efficient, precise, and valid across a variety of diseases to assess patient reports of symptoms and quality of life. This study was designed to evaluate the ability of children and adolescents with NS to complete the PROMIS assessment via computer and to initiate validity assessments of the short forms and full item banks in pediatric NS. Successful measurement of patient reported outcomes will contribute to our understanding of the impact of NS on children and adolescents. Design This cross-sectional study included 151 children and adolescents 8-17 years old with NS from 16 participating institutions in North America. The children completed the PROMIS pediatric depression, anxiety, social-peer relationships, pain interference, fatigue, mobility and upper extremity functioning measures using a web-based interface. Responses were compared between patients experiencing active NS (n = 53) defined by the presence of edema and patients with inactive NS (n = 96) defined by the absence of edema. Results All 151 children and adolescents were successfully able to complete the PROMIS assessment via computer. As hypothesized, the children and adolescents with active NS were significantly different on 4 self-reported measures (anxiety, pain interference, fatigue, and mobility). Depression, peer relationships, and upper extremity functioning were not different between children with active vs. inactive NS. Multivariate analysis showed that the PROMIS instruments remained sensitive to NS disease activity after adjusting for demographic characteristics. Conclusions Children and adolescents with NS were able to successfully complete the PROMIS instrument using a web-based interface. The computer based pediatric PROMIS measurement effectively discriminated between children and adolescents with active and inactive NS. The domain scores found in this study are consistent with previous reports investigating the health-related quality of life in children and adolescents with NS. This study establishes known-group validity and feasibility for PROMIS pediatric measures in children and adolescents with NS
    corecore