1,869 research outputs found

    Effectiveness of a Simulated Pack to Manipulate Wolf Movements

    Get PDF
    Bioboundaries, also called biofences, are deterrents that attempt to exploit certain innate behaviors to exclude wildlife from target areas. We hypothesized that human-deployed scent marks and playbacks of foreign howls could simulate a territorial gray wolf (Canis lupus) pack impinging on a resident pack, thereby causing the resident pack to move. During summer 2010, we deployed a simulated-pack bioboundary near 3 wolf packs in northern Wisconsin and monitored their movements relative to 3 wolf packs experiencing a sham treatment, to control for effects of human presence. We analyzed wolves’ locations (≥1 location per week) and used linear models with mixed effects to examine distance from the rendezvous site as a function of treatment (sham or experimental) and phase of treatment (before or after treatment was initiated), while accounting for variations in individual wolves. We found little evidence that biofences, as configured and deployed in this study, caused wolves to change use of their territory

    A Late Born White-tailed Deer, Odocoileus virginianus, Fawn in Southcentral Wisconsin

    Get PDF
    Published reports of peak breeding and parturition dates for White-tailed Deer (Odocoileus virginianus) indicate that deer in northern regions typically breed during November and give birth during late May and early June. However, we report a late-born White-tailed Deer fawn killed by a vehicle between 12-13 March 2007 in south central Wisconsin. Morphology measurements and body weight indicated the individual was 63-76 days old, was born between 26 December 2006 and 8 January 2007, and was conceived between 14-27 June 2006. To our knowledge, this observation represents the latest documented breeding activity in northern deer populations

    Targeted RNA-Sequencing Enables Detection of Relevant Translocations and Single Nucleotide Variants and Provides a Method for Classification of Hematological Malignancies-RANKING

    Get PDF
    BACKGROUND: Patients with hematological malignancies (HMs) carry a wide range of chromosomal and molecular abnormalities that impact their prognosis and treatment. Since no current technique can detect all relevant abnormalities, technique(s) are chosen depending on the reason for referral, and abnormalities can be missed. We tested targeted transcriptome sequencing as a single platform to detect all relevant abnormalities and compared it to current techniques. MATERIAL AND METHODS: We performed RNA-sequencing of 1385 genes (TruSight RNA Pan-Cancer, Illumina) in bone marrow from 136 patients with a primary diagnosis of HM. We then applied machine learning to expression profile data to perform leukemia classification, a method we named RANKING. Gene fusions for all the genes in the panel were detected, and overexpression of the genes EVI1, CCND1, and BCL2 was quantified. Single nucleotide variants/indels were analyzed in acute myeloid leukemia (AML), myelodysplastic syndrome and patients with acute lymphoblastic leukemia (ALL) using a virtual myeloid (54 genes) or lymphoid panel (72 genes). RESULTS: RANKING correctly predicted the leukemia classification of all AML and ALL samples and improved classification in 3 patients. Compared to current methods, only one variant was missed, c.2447A>T in KIT (RT-PCR at 10(-4)), and BCL2 overexpression was not seen due to a t(14; 18)(q32; q21) in 2% of the cells. Our RNA-sequencing method also identified 6 additional fusion genes and overexpression of CCND1 due to a t(11; 14)(q13; q32) in 2 samples. CONCLUSIONS: Our combination of targeted RNA-sequencing and data analysis workflow can improve the detection of relevant variants, and expression patterns can assist in establishing HM classification

    Global Biobank analyses provide lessons for developing polygenic risk scores across diverse cohorts

    Get PDF
    Polygenic risk scores (PRSs) have been widely explored in precision medicine. However, few studies have thoroughly investigated their best practices in global populations across different diseases. We here utilized data from Global Biobank Meta-analysis Initiative (GBMI) to explore methodological considerations and PRS performance in 9 different biobanks for 14 disease endpoints. Specifically, we constructed PRSs using pruning and thresholding (P + T) and PRS-continuous shrinkage (CS). For both methods, using a European-based linkage disequilibrium (LD) reference panel resulted in comparable or higher prediction accuracy compared with several other non-European-based panels. PRS-CS overall outperformed the classic P + T method, especially for endpoints with higher SNP-based heritability. Notably, prediction accuracy is heterogeneous across endpoints, biobanks, and ancestries, especially for asthma, which has known variation in disease prevalence across populations. Overall, we provide lessons for PRS construction, evaluation, and interpretation using GBMI resources and highlight the importance of best practices for PRS in the biobank-scale genomics era.</p

    Constraints on the χ_(c1) versus χ_(c2) polarizations in proton-proton collisions at √s = 8 TeV

    Get PDF
    The polarizations of promptly produced χ_(c1) and χ_(c2) mesons are studied using data collected by the CMS experiment at the LHC, in proton-proton collisions at √s=8  TeV. The χ_c states are reconstructed via their radiative decays χ_c → J/ψγ, with the photons being measured through conversions to e⁺e⁻, which allows the two states to be well resolved. The polarizations are measured in the helicity frame, through the analysis of the χ_(c2) to χ_(c1) yield ratio as a function of the polar or azimuthal angle of the positive muon emitted in the J/ψ → μ⁺μ⁻ decay, in three bins of J/ψ transverse momentum. While no differences are seen between the two states in terms of azimuthal decay angle distributions, they are observed to have significantly different polar anisotropies. The measurement favors a scenario where at least one of the two states is strongly polarized along the helicity quantization axis, in agreement with nonrelativistic quantum chromodynamics predictions. This is the first measurement of significantly polarized quarkonia produced at high transverse momentum
    corecore